Acta Mathematica Vietnamica

, Volume 43, Issue 3, pp 433–448 | Cite as

On the Structure of \(\mathcal {N}_{p}\)-Spaces in the Ball

  • Bingyang Hu
  • Le Hai KhoiEmail author
  • Trieu Le


We study the structure of \(\mathcal N_{p}\)-spaces in the ball. In particular, we show that any such space is Moebius-invariant and for 0 < pn, all \(\mathcal N_{p}\)-spaces are different. Our results will be used in the study of operator theory on \(\mathcal N_{p}\)-spaces.


\(\mathcal N_{p}\)-space Multiplier Moebius-invariant Carleson measure Weighted composition operator 

Mathematics Subject Classification (2010)

32A36 47B33 



The second-named author is supported in part by MOE’s AcRF Tier 1 grants M4011166.110 (RG24/13) and M4011724.110 (RG128/16).


  1. 1.
    Bingyang, H., Khoi, L. H.: Weighted composition operators on \(\mathcal {N}_{p}\) spaces in the ball. C. R. Acad. Sci. Paris Ser. I(351), 719–723 (2013)zbMATHGoogle Scholar
  2. 2.
    Bingyang, H., Khoi, L. H.: Compact difference of weighted composition operators on \(\mathcal {N}_{p}\) spaces in the ball. Romanian J. Pure Appl. Math. 60, 101–116 (2015)zbMATHGoogle Scholar
  3. 3.
    Bingyang, H., Khoi, L. H., Le, T.: Essential norm for weighted composition operators on \(\mathcal {N}_{p}\) spaces in the ball. Vietnam J. Math. 44(2), 431–439 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bingyang, H., Khoi, L. H., Le, T.: Composition operators between \(\mathcal {N}_{p}\) spaces in the ball. North-W Eur. J. Math. 2(1), 103–120 (2016)zbMATHGoogle Scholar
  5. 5.
    Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Springer-Verlag (2000)Google Scholar
  6. 6.
    Mateljevic, M., Pavlovic, M.: L p-behavior of power series with positive coefficients and Hardy spaces. Proc. Am. Math. Soc. 87, 309–316 (1993)CrossRefzbMATHGoogle Scholar
  7. 7.
    Palmberg, N.: Composition operator acting on \(\mathcal {N}_{p}\)-spaces. Bull. Belg. Math. Soc. 14, 545–554 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Rudin, W.: Function Theory in the Unit Ball of \(\mathbb {C}^{n}\). Springer-Verlag, New York (1980)CrossRefGoogle Scholar
  9. 9.
    Ryll, J., Wojtaszczyk, P.: On homogeneous polynomials on a complex ball. Trans. Am. Math. Soc. 276, 107–116 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ueki, S.: Weighted composition operators acting between the \(\mathcal {N}_{p}\)-space and the weighted-type space \(H_{\alpha }^{\infty }\). Indag. Math. 23, 243–255 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Xiao, J.: Holomorphic \(\mathcal {Q}_{p}\) Spaces Lecture Notes in Math., vol. 1767. Springer-Verlag, New York (2001)Google Scholar
  12. 12.
    Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Springer-Verlag (2004)Google Scholar
  13. 13.
    Zhao, R., Zhu, K.: Theory of Bergman spaces on the unit ball. Memoires de la SMF, 115 (2008)Google Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA
  2. 2.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological University (NTU)SingaporeSingapore
  3. 3.Department of Mathematics and StatisticsUniversity of ToledoToledoUSA

Personalised recommendations