Acta Mathematica Vietnamica

, Volume 42, Issue 4, pp 727–746 | Cite as

New Classes of Generalized PN Spaces and Their Normability

  • P. K. HarikrishnanEmail author
  • Bernardo Lafuerza Guillén
  • Yeol Je Cho
  • K. T. Ravindran


In this paper, we obtain some properties of invertible operators; convex, balanced, absorbing sets; and \(\mathcal {D}\)-boundedness in Šerstnev spaces. We prove that some PN spaces (V,ν,τ,τ ), which are not Šerstnev spaces, in which the triangle function τ is not Archimedean can be endowed with a structure of a topological vector space, and we give suitable example to illustrate this result. Also, we show that the topological spaces obtained in such a manner are normable under certain given conditions: some examples are given.


Probabilistic normed spaces Šerstnev spaces Normability Topological vector spaces (TVS) Local convexity Archimedean 

Mathematics Subject Classification (2010)




The authors are grateful to the anonymous referees for careful reading of the manuscript. Referees’ valuable comments and suggestions have improved the paper. The first author acknowledges MIT, Manipal University, India; the second author acknowledges Universidad de Almeria, Spain; the third author acknowledges Gyeongsang National University, South Korea; and the fourth author acknowledges Payyanur College, Kannur University, India, for their kind encouragement.


  1. 1.
    Alsina, C., Schweizer, B., Sklar, A.: On the definition of a probabilistic normed space. Aequationes Math. 46, 91–98 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alsina, C., Schweizer, B., Sklar, A.: Continuity properties of probabilistic norms. J. Math. Anal. Appl. 208, 446–452 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lafuerza-Guillén, B., Harikrishnan, P.: Probabilistic Normed Spaces. Imperial College Press, World Scientific, UK (2014)CrossRefzbMATHGoogle Scholar
  4. 4.
    Lafuerza-Guillén, B.: Finite products of probabilistic normed spaces. Radovi Matematički 13, 111–117 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Lafuerza-Guillén, B., Rodríguez Lallena, A., Sempi, C.: A study of boundedness in probabilistic normed spaces. J. Math. Anal. Appl. 232, 183–196 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lafuerza-Guillén, B.: \(\mathcal {D}\)-bounded sets in probabilistic normed spaces and their products. Rend. Mat. Serie. VII(21), 17–28 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Lafuerza-Guillén, B., Sempi, C., Zhang, G.: A study of boundedness in probabilistic normed spaces. Non. Anal. 73, 1127–1135 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lafuerza-Guillén, B., Rodríguez Lallena, J.A., Sempi, C.: Normability of probabilistic normed spaces. Note di Matematica 29(1), 99–111 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lafuerza-Guillén, B., Rodríguez Lallena, J.A., Sempi, C.: Probabilistic norms for linear operators. J. Math. Anal. Appl. 220, 462–476 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lafuerza-Guillén, B., Rodríguez Lallena, J.A., Sempi, C.: Some classes of probabilistic normed spaces. Rend. Mat. 17, 237–252 (1997)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Lafuerza-Guillén, B.: Primeros resultados en el estudio de los espacios normados probabilisticos con nuevos conceptos de acotacin. Ph.D Thesis. Universidad de Almeria, Spain (1996)Google Scholar
  12. 12.
    Frank, M.J., Schweizer, B.: On the duality of generalized infimal and supremal convolutions. Rend. Mat. (6)12(1), 1–23 (1979)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Zhang, G., Zhang, M.: On the normability of generalized Šerstnev PN spaces. J. Math. Anal. Appl. 340, 1000–1011 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Harikrishnan, P.K., Lafuerza-Guillén, B., Ravindran, K.T.: Compactness and \(\mathcal {D}\)-boundedness in Menger’s 2-probabilistic normed spaces. FILOMAT 30(5), 1263–1272 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Harikrishnan, P.K., Ravindran, K.T.: Some results of accretive operators and convex sets in 2-probabilistic normed space. J. Prime Res. Math. 8, 76–84 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Jagadeesha, B., Kedukodi, B.S., Kuncham, S.P.: Interval valued L-fuzzy ideals based on t-norms and t-conorms. J. Intell. Fuzzy Syst. 28(6), 2631–2641 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kolmogoroff, A.N.: Zur Normierbarkeit eines allgemeinen topologischen linearen Räumes. Studia Math. 5, 29-33; English translation. In: Tiklomirov V.M. (ed.) Selected Works of A. N. Kolmogorov, Vol. I: Mathematics and Mechanics, Kluwer, Dordrecht-Boston-London, 183–186 (1934)Google Scholar
  18. 18.
    Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 28, 535–537 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Schweizer, B., Sklar, A.: Probabilistic metric spaces, 2nd edn. Springer, North Holland (1983,2005)Google Scholar
  20. 20.
    Šerstnev, A.N.: On the motion of a random normed space. Dokl. Akad. Nauk SSSR 149, 280–283 (1963). (English translation in Soviet Math. Dokl. 4, 388–390 (1963))MathSciNetGoogle Scholar
  21. 21.
    Sherwood, H.: Complete probabilistic metric spaces. Z. Wahrsch. Verw. Gebiete. 20, 117–128 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Taylor, M.D.: Introduction to Functional Analysis. Wiley, New York-London-Sydney (1985)Google Scholar
  23. 23.
    Zhang, M.: Representation theorem in finite dimensional probabilistic normed spaces. Sci. Math. Jpn. (2004)Google Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • P. K. Harikrishnan
    • 1
    Email author
  • Bernardo Lafuerza Guillén
    • 2
  • Yeol Je Cho
    • 3
  • K. T. Ravindran
    • 4
  1. 1.Department of Mathematics, Manipal Institute of TechnologyManipal UniversityManipalIndia
  2. 2.Departamento de Matemática Aplicada y EstadísticaUniversidad de AlmeríaAlmeríaSpain
  3. 3.Department of Mathematics Education and the RINSGyeongsang National UniversityJinjuSouth Korea
  4. 4.Department of Mathematics, Payyanur CollegeKannur UniversityKannurIndia

Personalised recommendations