Skip to main content
Log in

The Stratification by Rank for Homogeneous Polynomials with Border Rank 5 which Essentially Depend on Five Variables

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

We give the stratification by the symmetric tensor rank of all degree d ≥ 9 homogeneous polynomials with border rank 5 and which depend essentially on at least five variables, extending previous works (A. Bernardi, A. Gimigliano, M. Idà, E. Ballico) on lower border ranks. For the polynomials which depend on at least five variables, only five ranks are possible: 5, d + 3, 2d + 1, 3d − 1, 4d − 3, but each of the ranks 3d − 1 and 2d + 1 is achieved in two geometrically different situations. These ranks are uniquely determined by a certain degree 5 zero-dimensional scheme A associated with the polynomial. The polynomial f depends essentially on at least five variables if and only if A is linearly independent (in all cases, f essentially depends on exactly five variables). The polynomial has rank 4d − 3 (resp. 3d − 1, resp. 2d + 1, resp. d + 3, resp. 5) if A has 1 (resp. 2, resp. 3, resp. 4, resp. 5) connected component. The assumption d ≥ 9 guarantees that each polynomial has a uniquely determined associated scheme A. In each case, we describe the dimension of the families of the polynomials with prescribed rank, each irreducible family being determined by the degrees of the connected components of the associated scheme A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albera, L., Chevalier, P., Comon, P., Ferreol, A.: On the virtual array concept for higher order array processing. IEEE Trans. Sig. Proc. 53(4), 1254–1271 (2005)

    Article  MathSciNet  Google Scholar 

  2. Ballico, E.: Subsets of the variety X P n evincing the X-rank of a point of P n. Houston J. Math. 42(3), 803–824 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Ballico, E., Bernardi, A.: Decomposition of homogeneous polynomials with low rank. Math. Z. 271, 1141–1149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballico, E., Bernardi, A.: Stratification of the fourth secant variety of Veronese variety via the symmetric rank. Adv. Pure Appl. Math. 4(2), 215–250 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernardi, A., Gimigliano, A., Idà, M.: Computing symmetric rank for symmetric tensors. J. Symb. Comput. 46(1), 34–53 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, A., Ranestad, K.: The cactus rank of cubic forms. J. Symb. Comput. 50, 291–297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E.P.: Symmetric tensor decomposition. Linear Algebra Appl. 433(11-12), 1851–1872 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buczyńska, W., Buczyński, J.: Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes. J. Algebraic Geom. 23, 63–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buczyński, J., Ginensky, A., Landsberg, J.M.: Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture. J. London Math. Soc. (2) 88, 1–24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chevalier, P.: Optimal separation of independent narrow-band sources-concept and performance, Signal Processing, Elsevier, 73, 27–48 special issue on blind separation and deconvolution (1999)

  11. Comas, G., Seiguer, M.: On the rank of a binary form. Found. Comp. Math. 11(1), 65–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Comon, P., Lacoume, J.-L.: Independent component analysis Higher Order Statistics, pp 29–38. Elsevier, Amsterdam, London (1992)

    Google Scholar 

  13. Comon, P., Golub, G.H., Lim, L. -H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. 30(3), 1254–1279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Comon, P., Mourrain, B.: Decomposition of Quantics in Sums of Powers of Linear Forms. Signal Process. Elsevier 53, 2 (1996)

    Article  MATH  Google Scholar 

  15. De Lathauwer, L., Castaing, J.: Tensor-based techniques for the blind separation of DS-CDMA signals. Signal Process. 87(2), 322–336 (2007)

    Article  MATH  Google Scholar 

  16. Dogǎn, M. C., Mendel, J.M.: Applications of cumulants to array processing. I. aperture extension and array calibration. IEEE Trans. Sig. Proc. 43(5), 1200–1216 (1995)

    Article  Google Scholar 

  17. Eisenbud, D., Harris, J.: Finite projective schemes in linearly general position. J. Algebraic Geom. 1(1), 15–30 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Ellia, P. h., Peskine, Ch.: Groupes de points de P 2: caractère et position uniforme Algebraic Geometry (L’ Aquila, 1988), 111–116, Lecture Notes in Math., p 1417. Springer, Berlin (1990)

    Google Scholar 

  19. Granger, M.: Géométrie des schémas de Hilbert ponctuels. Mém. Soc. Math. France (N.S.) 2e série 8, 1–84 (1983)

    MATH  Google Scholar 

  20. Hartshorne, R.: Algebraic Geometry. Springer-Verlag, Berlin (1977)

    Book  MATH  Google Scholar 

  21. Jelisiejew, J.: An upper bound for the Waring rank of a form. Arch. Math. 102, 329–336 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, T., Sidiropoulos, N.D.: Kruskal’s permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models. IEEE Trans. Sig. Proc. 52(9), 2625–2636 (2004)

    Article  Google Scholar 

  23. Iarrobino, A., Kanev, V.: Power Sums, Gorenstein Algebras, and Determinantal Loci Lecture Notes in Mathematics, vol. 1721. Springer-Verlag, Berlin, Appendix C by Iarrobino and Steven L. Kleiman (1999)

  24. Landsberg, J.M.: Tensors: Geometry and Applications. Graduate Studies in Mathematics, vol. 128. American Mathematical Society, Providence (2012)

  25. Landsberg, J.M., Teitler, Z.: On the ranks and border ranks of symmetric tensors. Found. Comput. Math. 10(3), 339–366 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lim, L.-H., De Silva, V.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. McCullagh, P.: Tensor Methods in Statistics. Monographs on Statistics and Applied Probability. Chapman and Hall (1987)

  28. Ranestad, K., Schereyer, F. -O.: On the rank of a symmetric form. J. Algebra 346, 340–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the referee for his useful comments. This study is partially supported by the MIUR and GNSAGA of INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Ballico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballico, E. The Stratification by Rank for Homogeneous Polynomials with Border Rank 5 which Essentially Depend on Five Variables. Acta Math Vietnam 42, 509–531 (2017). https://doi.org/10.1007/s40306-017-0211-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-017-0211-6

Keywords

Mathematics Subject Classification (2010)

Navigation