Advertisement

Acta Mathematica Vietnamica

, Volume 42, Issue 2, pp 249–256 | Cite as

The Higher Topological Complexity of Complement of Fiber Type Arrangement

  • Nguyen Viet DungEmail author
  • Nguyen Van Ninh
Article
  • 148 Downloads

Abstract

Let 𝓐 be a fiber type arrangement of hyperplanes in ℂ n with complement M(𝓐) (see Orlik, O., Terao, H. 1992). In this paper, we will give an explicit formula for the higher topological complexity T C n for the complement M(𝓐) in terms of exponents of the arrangement 𝓐.

Keywords

Higher topological complexity Motion planing algorithm Schwarz genus Hyperplane arrangements 

Mathematics Subject Classification (2010)

Primary 52C35 55R80 Secondary 14H10 

Notes

Acknowledgments

The authors would like to thank the referee who has critically read the first manuscript of this paper and help them to bring it to the present form.

References

  1. 1.
    Basabe, I., González, J., Rudyak, Y., Tamaki, D.: Higher topological complexity and homotopy dimension of configuration spaces on spheres. Algebr. Geom. Topol. 14, 2103–2124 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dung, N.V., Ninh, N.V.: Higher topological complexity of configuration spaces. (Preprint)Google Scholar
  3. 3.
    González, J., Grant, M.: Sequential motion planning of non-colliding particles in Euclidean spaces. Proc. Am. Math. Soc. 143, 4503–4512 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Falk, M., Randell, R.: The lower central series of a fiber-type arrangement. Invent. Math. 82, 77–88 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Farber, M.: Topological complexity of motion planning. Discret. Comput. Geom. 29, 211–221 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jambu, M., Terao, H.: Free arrangement of hyperplanes and supersolvable lattices. Adv. Math. 52, 248–258 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Orlik, O., Terao, H.: Arrangements of hyperplanes, Springer - Verlag (1992)Google Scholar
  8. 8.
    Rudyak, Y.: On higher analogs of topological complexity. Topol. Appl. 157, 916–920 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rybnikov, G.: On the fundamental group of the complement of a complex hyperplanes arrangement. Funktsional. Anal. i Prilozhen. 45(2), 71–85 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Schwarz, A.: The genus of fiber space. Am. Math. Sci. Transl. 55, 49–140 (1966)Google Scholar
  11. 11.
    Terao, H.: Modular elements of lattices and topological fibrations. Adv. Math. 62, 135–154 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Yuzvinsky, S.: Topological complexity of generic hyperplane complements. Contemp. Math. 438, 115–120 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Institute of Mathematics, Vietnam Academy of Science and TechnologyCau GiayVietnam
  2. 2.Department of MathematicsThai Nguyen University of EducationQuang TrungVietnam

Personalised recommendations