Acta Mathematica Vietnamica

, Volume 42, Issue 2, pp 289–310 | Cite as

A Short Survey on the Integral Identity Conjecture and Theories of Motivic Integration

  • Lê Quy ThuongEmail author


In Kontsevich-Soibelman’s theory of motivic Donaldson-Thomas invariants for 3-dimensional noncommutative Calabi-Yau varieties, the integral identity conjecture plays a crucial role as it involves the existence of these invariants. A purpose of this note is to show how the conjecture arises. Because of the integral identity’s nature, we shall give a quick tour on theories of motivic integration, which lead to a proof of the conjecture for algebraically closed ground fields of characteristic zero.


Motivic integration Formal schemes Rigid varieties Volume Poincaré series Resolution of singularity Integral identity conjecture Definable sets 

Mathematics Subject Classification (2010)

Primary 03C60 14B20 14E18 14G22 32S45 11S80 



The author sincerely thanks the Basque Centre for Applied Mathematics (BCAM) for hospitality during his visit.

This research is funded by the Vietnam National University, Hanoi (VNU) under project number QG.16.06. This research is also supported by ERCEA Consolidator Grant 615655 - NMST and by the Basque Government through the BERC 2014-2017 program and by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323.


  1. 1.
    Behrend, K.: Donaldson-Thomas invariants via microlocal geometry. Ann. Math. 170(3), 1307–1338 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berkovich, V.: Vanishing cycles for formal schemes II. Invent. Math. 125(2), 367–390 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berthelot, P.: Cohomologie rigide et cohomologie rigide à supports propres. Prépublication, Inst. Math. de Rennes (1996)Google Scholar
  4. 4.
    Bittner, F.: On motivic zeta functions and the motivic nearby fiber. Math. Z. 249, 63–83 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cluckers, R., Loeser, F.: Constructible motivic functions and motivic integration. Invent. Math. 173(1), 23–121 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Conrad, B.: Irreducible components of rigid spaces. Ann. Inst. Fourier (Grenoble) 49(2), 473–541 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    De Jong, A.J.: Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math. 82, 5–96 (1996)CrossRefzbMATHGoogle Scholar
  8. 8.
    Denef, J., Loeser, F.: Motivic Igusa zeta functions. J. Algebraic Geom. 7, 505–537 (1998)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Denef, J., Loeser, F.: Motivic exponential integrals and a motivic Thom-Sebastiani theorem. Duke Math. J. 99(2), 285–309 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Denef, J., Loeser, F.: Geometry on arc spaces of algebraic varieties. In: European Congress of Mathematics Vol. 1 (Barcelona, 2000), Progr. Math., vol. 201, pp. 327–348, Birkhaüser, Basel (2001)Google Scholar
  11. 11.
    Denef, J., Loeser, F.: Lefschetz numbers of iterates of the monodromy and truncated arcs. Topology 41(5), 1031–1040 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Greenberg, M.J.: Schemata over local rings. Ann. Math. 73, 624–648 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hrushovski, E., Kazhdan, D.: Integration in valued fields. In: Algebraic and Number Theory, Progress in Mathematics, Birkhüser 253, 261–405 (2006)Google Scholar
  14. 14.
    Hrushovski, E., Kazhdan, D.: The value ring of geometric motivic integration, and the Iwahori Heck algebra of S L 2. With an appendix by Nir Avni. Geom. Funct. Anal. 17, 1924–1967 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hrushovski, E., Loeser, F.: Monodromy and the Lefschetz fixed point formula. Ann. Sci. École Norm. Sup. 48(2), 313–349 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Joyce, D., Song, Y.: A theory of generalized Donaldson-Thomas invariants. Mem. Am. Math. Soc. 217(1020), iv+199 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson-Thomas invariants and cluster tranformations. arXiv:0811.2435vl
  18. 18.
    Kontsevich, M., Soibelman, Y.: Motivic Donaldson-Thomas invariants: summary of results. In: Castano-Bernard, R., Soibelma, Y., Zharkov, I. (eds.) Mirror Symmetry and Tropical Geometry, Contemporary Mathematics 527, pp. 55-90. American Mathematical Society, Providence, RI (2010)CrossRefGoogle Scholar
  19. 19.
    Lê, Q.T.: Proofs of the integral identity conjecture over algebraically closed fields. Duke Math. J. 164(1), 157–194 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lê, Q.T.: The motivic Thom-Sebastiani theorem for regular and formal functions. to appear in J. reine angew. Math., doi: 10.1515/crelle-2015-0022,; arXiv:1405.7065
  21. 21.
    Lê, Q. T.: A proof of the integral identity conjecture, II. preprint, arXiv:1508.00425
  22. 22.
    Loeser, F., Sebag, J.: Motivic integration on smooth rigid varieties and invariants of degenerations. Duke Math. J. 119(2), 315–344 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Looijenga, E.: Motivic measures. Astérisque 276, 267–297 (2002). Séminaire Bourbaki 1999/2000, no. 874MathSciNetzbMATHGoogle Scholar
  24. 24.
    Nicaise, J., Sebag, J.: Motivic Serre invariants, ramification, and the analytic Milnor fiber. Invent. Math. 168(1), 133–173 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nicaise, J., Sebag, J.: Motivic Serre invariants of curves. Manuscripta Math. 123(2), 105–132 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nicaise, J., Sebag, J.: Motivic Serre invariants and Weil restriction. J. Algebra 319, 1585–1610 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nicaise, J.: Formal and rigid geometry: an intuitive introduction and some applications. Enseign. Math. (2) 54(3-4), 213–249 (2008)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Nicaise, J.: A trace formula for rigid varieties, and motivic Weil generating series for formal schemes. Math. Ann. 343, 285–349 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sebag, J.: Intégration motivique sur les schémas formels. Bull. Soc. Math. France 132(1), 1–54 (2004). Séminaire Bourbaki 1999/2000, no. 874MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Temkin, M.: Desingularization of quasi-excellent schemes in characteristic zero. Adv. Math. 219(2), 488–522 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Thomas, R.P.: A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations. J. Differ. Geom. 54(2), 367–438 (2000). Séminaire Bourbaki 1999/2000, no. 874MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of MathematicsVietnam National UniversityThanh Xuan DistrictVietnam
  2. 2.BCAM - Basque Center for Applied MathematicsBilbaoSpain

Personalised recommendations