Acta Mathematica Vietnamica

, Volume 42, Issue 1, pp 149–162 | Cite as

On a Minimal Set of Generators for the Polynomial Algebra of Five Variables as a Module over the Steenrod Algebra

Article
  • 98 Downloads

Abstract

Let Pk be the graded polynomial algebra \(\mathbb {F}_{2}[x_{1},x_{2},{\ldots } ,x_{k}]\) over the prime field of two elements, \(\mathbb {F}_{2}\), with the degree of each xi being 1. We study the hit problem, set up by Frank Peterson, of finding a minimal set of generators for Pk as a module over the mod-2 Steenrod algebra, \(\mathcal {A}\). In this paper, we explicitly determine a minimal set of \(\mathcal {A}\)-generators for Pk in the case k = 5 and the degree 4(2d−1) with d an arbitrary positive integer.

Keywords

Steenrod squares Peterson hit problem Polynomial algebra 

Mathematics Subject Classification (2010)

55S10 55S05 55T15 

References

  1. 1.
    Boardman, J.M.: Modular representations on the homology of power of real projective space. In: Tangora, M.C. (ed.) Algebraic Topology, Oaxtepec, 1991. Contemp. Math., vol. 146, pp. 49–70 (1993)Google Scholar
  2. 2.
    Bruner, R.R., Hà, L.M., Hu’ng, N.H.V.: On behavior of the algebraic transfer. Trans. Am. Math. Soc. 357, 473–487 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Carlisle, D.P., Wood, R.M.W.: The boundedness conjecture for the action of the Steenrod algebra on polynomials. In: Ray, N., Walker, G. (eds.) Adams Memorial Symposium on Algebraic Topology 2, (Manchester, 1990). London Math. Soc. Lecture Notes Ser., vol. 176, pp. 203–216. Cambridge Univ. Press, Cambridge (1992)Google Scholar
  4. 4.
    Crabb, M.C., Hubbuck, J.R.: Representations of the homology of BV and the Steenrod algebra II. Algebraic Topology: new trend in localization and periodicity. Progr. Math. 136, 143–154 (1996)MATHGoogle Scholar
  5. 5.
    Hu’ng, N.H.V.: The cohomology of the Steenrod algebra and representations of the general linear groups. Trans. Am. Math. Soc. 357, 4065–4089 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hu’ng, N.H.V., Nam, T.N.: The hit problem for the modular invariants of linear groups. J. Algebra 246, 367–384 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Janfada, A.S., Wood, R.M.W.: The hit problem for symmetric polynomials over the Steenrod algebra. Math. Proc. Camb. Philos. Soc. 133, 295–303 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kameko, M.: Products of projective spaces as Steenrod modules. PhD Thesis, The Johns Hopkins University (1990)Google Scholar
  9. 9.
    Mothebe, M.F.: Generators of the polynomial algebra \(\mathbb {F}_{2}[x_{1},\ldots , x_{n}]\) as a module over the Steenrod algebra. PhD Thesis, The University of Manchester (1997)Google Scholar
  10. 10.
    Nam, T.N.: \(\mathcal {A}\)-générateurs génériquess pour l’algèbre polynomiale. Adv. Math. 186, 334–362 (2004)Google Scholar
  11. 11.
    Peterson, F.P.: Generators of \(H^{*}(\mathbb RP^{\infty } \times \mathbb RP^{\infty })\) as a module over the Steenrod algebra. Abstr. Am. Math. Soc. 833, 55–89 (1987)Google Scholar
  12. 12.
    Phuc, D.V., Sum, N.: On the generators of the polynomial algebra as a module over the Steenrod algebra. C. R. Acad. Sci. Paris, Ser. I 353, 1035–1040 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Phuc, D.V., Sum, N.: On a minimal set of generators for the polynomial algebra of five variables as a module over the Steenrod algebra. Quy Nhon University, Viet Nam, preprint. arXiv:1502.05569 (2013)
  14. 14.
    Priddy, S.: On characterizing summands in the classifying space of a group. I. Am. J. Math. 112, 737–748 (1990)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Repka, J., Selick, P.: On the subalgebra of \(H_{*}((\mathbb RP^{\infty })^{n};\mathbb {F}_{2})\) annihilated by Steenrod operations. J. Pure Appl. Algebra 127, 273–288 (1998)Google Scholar
  16. 16.
    Silverman, J.H.: Hit polynomials and the canonical antiautomorphism of the Steenrod algebra. Proc. Am. Math. Soc. 123, 627–637 (1995)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Silverman, J.H., Singer, W.M.: On the action of Steenrod squares on polynomial algebras II. J. Pure Appl. Algebra 98, 95–103 (1995)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Singer, W.M.: The transfer in homological algebra. Math. Z. 202, 493–523 (1989)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Singer, W.M.: On the action of the Steenrod squares on polynomial algebras. Proc. Am. Math. Soc. 111, 577–583 (1991)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Steenrod, N.E., Epstein, D.B.A.: Cohomology operations, annals of mathematics studies, vol. 50. Princeton University Press, Princeton N.J (1962)Google Scholar
  21. 21.
    Sum, N.: The negative answer to Kameko’s conjecture on the hit problem. Adv. Math. 225, 2365–2390 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sum, N.: On the Peterson hit problem. Adv. Math. 274, 432–489 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Walker, G., Wood, R.M.W.: Young tableaux and the Steenrod algebra. In: Proceedings of the International School and Conference in Algebraic Topology, Ha Noi 2004, Geom. Topol. Monogr., Math. Sci. Publ., Coventry, vol. 11, pp 379–397 (2007)Google Scholar
  24. 24.
    Walker, G., Wood, R.M.W.: Flag modules and the hit problem for the Steenrod algebra. Math. Proc. Camb. Philos. Soc. 147, 143–171 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Wood, R.M.W.: Steenrod squares of polynomials and the Peterson conjecture. Math. Proc. Camb. Philos. Soc. 105, 307–309 (1989)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Wood, R.M.W.: Problems in the Steenrod algebra. Bull. London Math. Soc. 30, 449–517 (1998)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of MathematicsQuy Nhon UniversityBinh DinhVietnam

Personalised recommendations