Acta Mathematica Vietnamica

, Volume 42, Issue 4, pp 587–604 | Cite as

An Extragradient Method for Finding Minimum-Norm Solution of the Split Equilibrium Problem

  • Tran Viet AnhEmail author


The purpose of this paper is to find minimum-norm solutions of the split equilibrium problem. This problem is motivated by the least-squares solution to the constrained linear inverse problem. By using the extragradient method, we derive the strong convergence of an iterative algorithm to the minimum-norm solution of the split equilibrium problem. As special cases, minimum-norm solutions of the split variational inequality problem and the split feasibility problem can be found.


Split equilibrium problem Minimum-norm solution Strong convergence 

Mathematics Subject Classification (2010)

49M37 90C26 65K15 



The author is very grateful to the anonymous referee and the editor for their useful comments and advices which helped to improve the quality and presentation of this paper.


  1. 1.
    Anh, P.K., Hieu, D.V.: Parallel hybrid methods for variational inequalities, equilibrium problems and common fixed point problems. Vietnam J. Math. 44(2), 351–374 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anh, P.N., Hien, N.D.: Hybrid proximal point and extragradient algorithms for solving equilibrium problems. Acta Math. Vietnam. 39, 405–423 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Anh, P.N.: A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optimization 62, 271–283 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anh, P.N.: A logarithmic quadratic regularization method for solving pseudomonotone equilibrium problems. Acta Math. Vietnam. 34, 183–200 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Anh, P.N., Muu, L.D., Strodiot, J.J.: Generalized projection method for non-Lipschitz multivalued monotone variational inequalities. Acta Math. Vietnam. 34, 67–79 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Existence and solution methods for equilibria. Eur. J. Oper. Res. 227, 1–11 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)CrossRefGoogle Scholar
  11. 11.
    Censor, Y., Segal, A.: Iterative projection methods in biomedical inverse problems. In: Censor, Y, Jiang, M., Louis, A.K. (eds.) Mathematical Methods in Biomedical Imaging and Intensity-Modulated Therapy, IMRT, Edizioni della Norale, Pisa, Italy, pp 65–96 (2008)Google Scholar
  12. 12.
    Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Prob. 21, 2071–2084 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ceng, L.C., Ansari, Q.H., Yao, J.C.: Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem. Nonlinear Anal. 75, 2116–2125 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    He, Z.: The split equilibrium problems and its convergence algorithms. J. Inequal. Appl. 2012:162, 15 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18, 1159–1166 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Muu, L.D.: Stability property of a class of variational inequality. Optimization 15, 347–351 (1984)zbMATHGoogle Scholar
  19. 19.
    Oettli, W.: A remark on vector valued equilibria and generalized monotonicity. Acta Math. Vietnam. 22, 213–221 (1997)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Sabharwal, A., Potter, L.C.: Convexly constrained linear inverse problem: iterative least-squares and regularization. IEEE Trans. Signal Process. 46, 2345–2352 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tran, D.Q., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optimization 57, 749–776 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Van Tiel, J.: Convex Analysis: An Introductory Text. Wiley, UK (1984)zbMATHGoogle Scholar
  23. 23.
    Xu, H.-K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66, 240–256 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Scientific FundamentalsPosts and Telecommunications Institute of TechnologyHanoiVietnam

Personalised recommendations