Skip to main content
Log in

An Overview of Motivic Homotopy Theory

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

Motivic homotopy theory was constructed by Morel and Voevodsky in the 1990s. It led to such striking applications as the solution of the Milnor conjecture and the Bloch-Kato conjecture on the Galois symbol. Since then the theory has turned to a systematic study of its basic invariants and structures, as well as providing numerous new applications. Morel, Cisinski-Déglise, and Röndigs-Østvær have described the relation of the motivic stable homotopy category to Voevodskys triangulated category of motives. Morel’s computation of the endomorphism of the sphere spectrum points out a close relationship to quadratic forms, and has given rise to the construction of interesting new oriented cycle theories. Asok and Fasel have applied computations of unstable motivic homotopy groups to stability problems for algebraic vector bundles. Isaksen and others have computed motivic versions of Adams-Novikov and Adams spectral sequences, and used this information to improve known computations of these spectral sequences in classical homotopy theory. We will discuss the basic ideas going into the construction of motivic homotopy theory and some of these results and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is still a hope that the 2-adic information carried by the slice tower recovers a good deal of the minus part, but it is at present unclear how to make this into a precise statement.

References

  1. Adams, J.F.: Stable Homotopy and Generalised Homology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1974)

    Google Scholar 

  2. Ananyevskiy, A., Levine, M., Panin, I.: Witt sheaves and the η-inverted sphere spectrum. arXiv:1504.04860

  3. Asok, A., Fasel, J.: Splitting vector bundles outside the stable range and \(\mathbb {A}^{1}\)-homotopy sheaves of punctured affine spaces. J. Am. Math. Soc. 28(4), 1031–1062 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asok, A., Fasel, J.: Algebraic vector bundles on spheres. J. Topol. 7(3), 894–926 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asok, A., Wickelgren, K., Williams, B.: The simplicial suspension sequence in \(\mathbb {A}^{1}\)-homotopy. arXiv:1507.05152

  6. Balmer, P.: Derived Witt groups of a scheme. J. Pure Appl. Algebra 141, 101–129 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloch, S.: Algebraic cycles and higher K-theory. Adv. Math. 61(3), 267–304 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bousfield, A.K.: Cosimplicial resolutions and homotopy spectral sequences in model categories. Geom. Topol. 7, 1001–1053 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, E.H.: Cohomology theories. Ann. Math. Second Series 75, 467–484 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cisinski, D.C., Déglise, F.: Triangulated categories of mixed motives, preprint 2012 (version 3). arXiv:0912.2110v3 [math.AG]

  11. Dold, A., Thom, R.: Quasifaserungen und unendliche symmetrische Produkte. Ann. Math. Second Series 67, 239–281 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dugger, D., Isaksen, D.C.: The motivic Adams spectral sequence. Geom. Topol. 14(2), 967–1014 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dundas, B.I., Levine, M., Østvær, P.A., Röndigs, O., Voevodsky, V.: Motivic Homotopy Theory. Lectures from the Summer School held in Nordfjordeid, August 2002. Universitext. Springer-Verlag, Berlin (2007)

    MATH  Google Scholar 

  14. Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory, Progress in Mathematics, vol. 174. Basel-Boston-Berlin, Birkhäuser (1999)

  15. Freudenthal, H.: Über die Klassen der Sphärenabbildungen, I. Große Dimensionen. Compositio Math. 5, 299–314 (1938)

    MathSciNet  MATH  Google Scholar 

  16. Heller, J., Ormsby, K.: Galois equivariance and stable motivic homotopy theory. arXiv:1401.4728 [math.AT]

  17. Hovey, M.: Spectra and symmetric spectra in general model categories. J. Pure Appl. Algebra 165(1), 63–127 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999)

  19. Hoyois, M.: From algebraic cobordism to motivic cohomology. J. Reine Angew. Math 702, 173–226 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Hu, P., Kriz, I., Ormsby, K.: Convergence of the motivic Adams spectral sequence. J. K-Theory 7(3), 573–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, P., Kriz, I., Ormsby, K.: Remarks on motivic homotopy theory over algebraically closed fields. J. K-Theory 7(1), 55–89 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  23. Isaksen, D.C., Xu, Z.: Motivic stable homotopy and the stable 51 and 52 stems. Topol. Appl. 190, 31–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. James, I.M.: On the suspension sequence. Ann. Math. 65(1), 74–107 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jardine, J.F.: Motivic symmetric spectra. Doc. Math. 5, 445–553 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Kelly, S.: Triangulated categories of motives in positive characteristic. arXiv:1305.5349

  27. Landweber, P.S.: Homological properties of comodules over M U (M U) and B P (B P). Am. J. Math. 98(3), 591–610 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lazard, M.: Sur les groupes de Lie formels à un paramètre. Bull. Soc. Math. France 83, 251–274 (1955)

    MathSciNet  MATH  Google Scholar 

  29. Levine, M.: The Adams-Novikov spectral sequence and Voevodsky’s slice tower. Geom. Topol. 19(5), 2691–2740 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Levine, M.: A comparison of motivic and classical stable homotopy theories. J. Topol. 7(2), 327–362 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Levine, M.: Convergence of Voevodsky’s slice tower. Doc. Math. 18, 907–941 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Levine, M.: The homotopy coniveau tower. J. Topol. 1, 217–267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Levine, M.: Comparison of cobordism theories. J. Algebra 322(9), 3291–3317 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Levine, M., Morel, F.: Algebraic Cobordism. Monographs in Mathematics, p 246. Springer, Berlin (2007)

    Google Scholar 

  35. Levine, M., Pandharipande, R.: Algebraic cobordism revisited. Invent Math. 176(1), 63–130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Levine, M., Tripathi, G.S.: Quotients of MGL, their slices and their geometric parts. arXiv:1501.02436

  37. Mahowald, M.: EHP spectral sequence. In: Hazewinkel, M. (ed.) Encyclopedia of Mathematics. Springer (2001)

  38. May, J.P.: Simplicial objects in algebraic topology. Reprint of the 1967 original. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1992)

    Google Scholar 

  39. Milnor, J.: On the cobordism ring Ω and a complex analogue, Part I. Am. J. Math. 82(3), 505–521 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  40. Morel, F.: \(\mathbb {A}^{1}\)-Algebraic Topology Over a Field. Lecture Notes in Mathematics, p 2052. Springer, Heidelberg (2012)

    Book  Google Scholar 

  41. Morel, F.: The stable \(\mathbb {A}^{1}\)-connectivity theorems. K-theory 35, 1–68 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Morel, F.: An Introduction to \(\mathbb {A}^{1}\)-Homotopy Theory. Contemporary Developments in Algebraic K-Theory, pp 357–441. ICTP Lect. Notes (2004)

  43. Morel, F.: On the Motivic π 0 of the Sphere Spectrum. Axiomatic, Enriched and Motivic Homotopy Theory, pp 219–260 (2004)

  44. Morel, F., Voevodsky, V.: \(\mathbb {A}^{1}\)-homotopy theory of schemes. Publ. Math. IHES 90, 45–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Naumann, N., Spitzweck, M.: Brown representability in \(\mathbb {A}^{1}\)-homotopy theory. J. K-Theory 7(3), 527–539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Naumann, N., Spitzweck, M., Østvær, P.A.: Motivic Landweber exactness. Doc. Math. 14, 551–593 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton (2001)

  48. Nesterenko, Y.P., Suslin, A.A.: Homology of the general linear group over a local ring, and Milnor’s K-theory. Izv. Akad. Nauk SSSR Ser. Mat. 53(1), 121–146 (1989). Translation in Math. USSR-Izv 34(1), 121–145 (1990)

    MathSciNet  MATH  Google Scholar 

  49. Novikov, S.P.: Homotopy properties of Thom complexes. Mat. Sb. (N.S.) 57, 407–442 (1962)

    MathSciNet  Google Scholar 

  50. Novikov, S.P.: Some problems in the topology of manifolds connected with the theory of Thom spaces. Soviet Math. Dokl. 1, 717–720 (1960)

    MathSciNet  MATH  Google Scholar 

  51. Ormsby, K.M., Østvær, P.A.: Stable motivic π 1 of low-dimensional fields. Adv. Math. 265, 97–131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Panin, I., Pimenov, K., Röndigs, O.: A universality theorem for Voevodsky’s algebraic cobordism spectrum. Homology, Homotopy Appl. 10(1), 1–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Panin, I.: Oriented cohomology theories of algebraic varieties. I. (After I. Panin and A. Smirnov). Homology, Homotopy Appl. 11(1), 349–405 (2009)

    Article  MathSciNet  Google Scholar 

  54. Pelaez, P.: Multiplicative Properties of the Slice Filtration. Astérisque No. 335 (2011)

  55. Riou, J.: \(\ell ^{\prime }\)-alterations and dualisability. In: Levine, M., Yang, Y., Zhao, G. (eds.) Algebraic Elliptic Cohomology Theory and Flops, I. arXiv:1311.2159

  56. Riou, J.: Dualité de Spanier-Whitehead en géométrie algébrique. C. R. Math. Acad. Sci. Paris 340(6), 431–436 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Röndigs, O., Østvær, P.A.: Modules over motivic cohomology. Adv. Math. 219(2), 689–727 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Quillen, D.G.: Elementary proofs of some results of cobordism theory using Steenord operations. Adv. Math. 7(1971), 29–56 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  59. Quillen, D.G.: Homotopical Algebra. Lecture Notes in Mathematics, vol. 43. Springer-Verlag, Berlin-New York (1967)

  60. Ravenel, D.C.: Complex cobordism and stable homotopy groups of spheres, 2nd edn. AMS, Chelsea (2003)

    Book  MATH  Google Scholar 

  61. Serre, J. -P.: Homologie singulière des espaces fibrés. III. Applications homotopiques. C. R. Acad. Sci. Paris 232, 142–144 (1951)

    MathSciNet  MATH  Google Scholar 

  62. Stong, R.E.: Notes on Cobordism Theory. Princeton University Press (1968)

  63. Spitzweck, M.: Slices of motivic Landweber spectra. J. K-Theory 9(1), 103–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 1786 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  65. Totaro, B.: Milnor K-theory is the simplest part of algebraic K-theory. K-Theory 6(2), 177–189 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  66. Voevodsky, V.: Motivic Eilenberg-Mac Lane spaces. Publ. Math. Inst. Hautes Études Sci. 112, 1–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Voevodsky, V.: On the zero slice of the sphere spectrum. Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi i Prilozh., 106–115; translation in Proc. Steklov Inst. Math. 2004, no. 3 (246), 93–102

  68. Voevodsky, V.: Motivic cohomology with \(\mathbb {Z}/2\)-coefficients. Publ. Math. Inst. Hautes Études Sci. 98, 59–104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  69. Voevodsky, V.: Open problems in the motivic stable homotopy theory. I. Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), 3–34, Int. Press Lect. Ser., 3, I, Int. Press, Somerville (2002)

  70. Voevodsky, V.: A possible new approach to the motivic spectral sequence for algebraic K-theory. Recent progress in homotopy theory, pp. 371–379. Baltimore (2000), Contemp. Math., p. 293. Am. Math. Soc., Providence (2002)

  71. Voevodsky, V., Suslin, A., Friedlander, E.M.: Cycles, Transfers, and Motivic Homology Theories. Annals of Mathematics Studies, vol. 143. Princeton University Press, Princeton (2000)

  72. Voevodsky, V.: \(\mathbb {A}^{1}\)-homotopy theory. In: Proceedings of the International Congress of Mathematicians. Doc. Math. 1998, Extra Vol. I, 579–604, vol. I. Berlin (1998)

  73. Weibel, C.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

  74. Whitehead, G.W.: Elements of Homotopy Theory, Graduate Texts in Mathematics, vol. 61. Springer-Verlag (1978)

  75. Whitehead, G.W.: On the Freudenthal theorems. Ann. Math. 57(2), 209–228 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  76. Wickelgren, K., Williams, B.: The Simplicial EHP Sequence in \(\mathbb {A}^{1}\)-Algebraic Topology. arXiv:1411.5306

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Levine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levine, M. An Overview of Motivic Homotopy Theory. Acta Math Vietnam 41, 379–407 (2016). https://doi.org/10.1007/s40306-016-0184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-016-0184-x

Keywords

Mathematics Subject Classification (2010)

Navigation