Acta Mathematica Vietnamica

, Volume 42, Issue 2, pp 337–355 | Cite as

Conjugate Duality and Optimization over Weakly Efficient Set

  • Tran Van ThangEmail author


In this article, we present a conjugate duality for nonconvex optimization problems. This duality scheme is symmetric and has zero gap. As applied to a vector-maximization problem, it transforms the latter into an optimization problem over a weakly efficient set which can be solved by monotonic optimization methods.


Quasigradient duality Vector-optimization Weakly efficient set Quasi-supgradient Monotonic optimization 

Mathematics Subject Classification (2010)

80C90 90C60 49N25 



The author is grateful to Prof. Hoang Tuy for several suggestions and advices which have helped to improve the presentation of a first draft of the paper.


  1. 1.
    An, L.T.H., Tao, P.D., Nam, N.C., Muu, L.D.: Methods for optimizing over the efficient and weakly efficient sets of an affine fractional vector optimization program. Optimization 59, 77–93 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bitran, G.R.: Duality for nonlinear multiple-criteria optimization problem. J. Optim. Theory Appl. 35, 367–401 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cambini, A., Martein, L.: Generalized Convexity and Optimization: Theory and Applications (Lecture Notes in Economics and Mathematical Systems). Springer (2009)Google Scholar
  4. 4.
    Huang, X.X., Yang, X.Q.: Nonlinear Lagrangian for multiobjective optimization and applications to duality and exact penalization. SIAM J. Optim. 13, 675–692 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Li, Z.F.: Benson proper efficiency in the vector optimization of set-valued maps. J. Optim. Theory Appl. 98, 623–649 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Li, Z.M., Zhan, M.H.: Optimality conditions and Lagrange duality for vector extremum problem with set constraint. J. Optim. Theory Appl. 135, 323–352 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Luenberger, D.G.: Microeconomic Theory. McGraw-Hill Inc., New York (1995)Google Scholar
  8. 8.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Orlando (1985)zbMATHGoogle Scholar
  9. 9.
    Thach, P.T.: Global optimality criterion and duality with zero gap in nonconvex optimization. SIAM J. Math. Anal. 24, 1537–1556 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Thach, P.T.: A nonconvex duality with zero gap and applications. SIAM J. Optim. 4, 44–64 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Thach, P.T.: Dual preference in Leontiev production problem and its extension. Vietnam J. Math. 32, 209–218 (2004)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Thach, P.T., Konno, H., Yokota, D.: Dual approach to minimization on the set of Pareto-optimal solutions. J. Optim. Theory Appl. 88, 689–707 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Thach, P.T., Thang, T.V.: Conjugate duality for vector-maximization problems. J. Math. Anal. Appl. 1, 94–102 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Thach, P.T., Thang, T.V.: Problems with rerource allocation constraints and optimization over the efficient set. J. Global Optim. 58, 481–495 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tuy, H.: Monotonnic optimization: problem and solution approaches. SIAM J. Optim. 11, 464–494 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tuy, H., Migdalas, A., Hoai-Phuong, N.T.: A novel approach to Bilevel nonlinear programming. J. Global Optim. 38, 527–554 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tuy, H., Minoux, M., Hoai-Phuong, N.T.: Discrete monotonic optimization with application to a discrete location problem. SIAM J. Optim. 17, 78–97 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tuyen, H.Q., Muu, L.D.: Biconvex programming approach to optimization over the weakly efficient set of a multiple objective affine fractional problem. Oper. Res. Lett. 28, 81–92 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.University of Electric PowerHanoiVietnam

Personalised recommendations