Acta Mathematica Vietnamica

, Volume 42, Issue 1, pp 27–35 | Cite as

On ϕ-2-Absorbing Primary Submodules

  • Razieh Moradi
  • Mahdieh EbrahimpourEmail author


Let R be a commutative ring with identity and M be a unitary R-module. Let \(\phi :S(M)\rightarrow S(M)\cup \{\emptyset \}\) be a function, where S(M) is the set of submodules of M. We say that a proper submodule N of M is a ϕ-2-absorbing primary submodule if r s xNϕ(N) implies r xN, or s xN, or \(rs\in \sqrt {(N:M)}\), where r,sR and xM. In this paper, we study ϕ-2-absorbing primary submodules and we prove some basic properties of these submodules. Also, we give a characterization of ϕ-2-absorbing primary submodules and we investigate ϕ-2-absorbing primary submodules of some well-known modules.


Primary submodules ϕ-2-absorbing primary submodules Weakly 2-absorbing primary submodules ϕ-2-absorbing submodules 2-absorbing submodules 

Mathematics Subject Classification (2010)

13C05 13C13 


  1. 1.
    Aḡargün, A.G., Anderson, D.D., Valdes-Leon, S.: Unique factorization rings with zero divisors. Comm. Algebra 27, 1967–1974 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson, D.D., Bataineh, M.: Generalizations of prime ideals. Comm. Algebra 36, 686–696 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Anderson, D.F., Chapman, S.T.: How far is an element from being prime. J. Algebra Appl. 9, 779–789 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anderson, D.D., Smith, E.: Weakly prime ideals. Houston J. Math. 29, 831–840 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Austral. Math. Soc. 75, 417–429 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Badawi, A., Darani, A.: On weakly 2-absorbing ideals of commutative rings. To appear in Houston J. Math.Google Scholar
  7. 7.
    Badawi, A.: Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains and conductive domains. Comm. Algebra 30, 1591–1606 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc. 51(4), 1163–1173 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bhatwadekar, S.M., Sharma, P.K.: Unique factorization and birth of almost primes. Comm. Algebra 33, 43–49 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dauns, J.: Prime modules. J. Reine Angew. Math. 298, 156–181 (1978)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ebrahimpour, M., Nekooei, R.: On generalizations of prime ideals. Comm. Algebra 40, 1268–1279 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ebrahimpour, M., Nekooei, R.: On generalizations of prime submodules. Bull. Iran. Math. Soc. 39(5), 919–939 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ebrahimpour, M.: On generalisations of almost prime and weakly prime ideals. Bull. Iran. Math. Soc. 40(2), 531–540 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ebrahimpour, M.: On generalizations of prime ideals (II). Comm. Algebra 42, 3861–3875 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Galovich, S.: Unique factorization rings with zero divisors. Math. Mag. 51, 276–283 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lu, C.P.: Prime submodules. Comm. Math. Univ. Sancti Pauli 33, 61–69 (1984)zbMATHGoogle Scholar
  17. 17.
    Mc Casland, R.L., Moore, M.E.: Prime submodules. Comm. Algebra 20, 1803–1817 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mc Casland, R.L., Smith, P.F.: Prime submodules of Noetherian modules. Rocky Mountain J. Math. 23, 1041–1062 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Moore, M.E., Smith, S.J.: Prime and radical submodules of modules over commutative rings. Comm. Algebra 30, 5037–5064 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nekooei, R.: Weakly prime submodules. FJMS 39(2), 185–192 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Sharp, R.: Steps in Commutative Algebra. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  22. 22.
    Zamani, N.: φ-prime submodules. Glasgow Math. J. 52(2), 253–259 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesVali-e-Asr UniversityRafsanjanIran

Personalised recommendations