Skip to main content
Log in

Alexander Representation of Tangles

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

A tangle is an oriented 1-submanifold of the cylinder whose endpoints lie on the two disks in the boundary of the cylinder. Using an algebraic tool developed by Lescop, we extend the Burau representation of braids to a functor from the category of oriented tangles to the category of \({\mathbb {Z}}[t,t^{-1}]\)-modules. For (1,1)-tangles (i.e., tangles with one endpoint on each disk), this invariant coincides with the Alexander polynomial of the link obtained by taking the closure of the tangle. We use the notion of plat position of a tangle to give a constructive proof of invariance in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexander, J.W.: Topological invariants of knots and links. Trans. Am. Math. Soc. 30(2), 275–306 (1928)

    Article  MATH  Google Scholar 

  2. Bellingeri, P., Cattabriga, A.: Hilden braid groups preprint. arXiv:0909.4845 (2009)

  3. Bigelow, S.: A homological definition of the Jones polynomial. Geom. Topol, Monogr. 4 Geom. Topol. Publ., Coventry (2002)

  4. Birman, J.S.: Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J. (1974). Annals of Mathematics Studies, No. 82

    Google Scholar 

  5. Birman, J.S.: On the stable equivalence of plat representations of knots and links. Can. J. Math. 28(2), 264–290 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burau, W.: Uber Zopfgruppen und gleischsinning verdrillte Verkettungen. Abh. Math. Sem. Ham. II, 171–178 (1936)

  7. Birman, J.S.: On the stable equivalence of plat representations of knots and links. Canad. J. Math. 28, 264–290 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cimasoni, D., Turaev, V.: A Lagrangian representation of tangles. Topology 44(4), 747–767 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cimasoni, D., Turaev, V.: A Lagrangian representation of tangles. II. Fund. Math. 190, 11–27 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Florens, V., Massuyeau, G.: A functorial extension of the abelian Reidemeister torsion of threemanifolds To appear in l’Enseignement mathématiques.

  11. Kirk, P., Livingston, C., Want, Z.: The Gassner representation for string links. Commun. Contemp. Math. 3(2), 87–136 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lawrence, R.J.: A functorial approach to the one-variable Jones polynomial. J. Differ. Geom. 37(3), 689–710 (1993)

    MATH  MathSciNet  Google Scholar 

  13. Lescop, C.: A sum formula for the Casson-Walker invariant. Invent. Math. 133 (3), 613–681 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Le Dimet, J.Y.: Enlacements d’intervalles et torsion de Whitehead. Bull. Soc. Math. France 129(2), 215–235 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. de Gruyter Studies in Mathematics, 18. Walter de Gruyter and Co., Berlin (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Bigelow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bigelow, S., Cattabriga, A. & Florens, V. Alexander Representation of Tangles. Acta Math Vietnam 40, 339–352 (2015). https://doi.org/10.1007/s40306-015-0134-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-015-0134-z

Keywords

Mathematic Subject Classification (2010)

Navigation