Skip to main content
Log in

HYBRID PROXIMAL POINT AND EXTRAGRADIENT ALGORITHMS FOR SOLVING EQUILIBRIUM PROBLEMS

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

We propose new iteration methods for finding a common point of the solution set of a pseudomonotone equilibrium problem and the solution set of a monotone equilibrium problem. The methods are based on both the extragradient-type method and the viscosity approximation method. We obtain weak convergence theorems for the sequences generated by these methods in a real Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh, P.N.: A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optim. 62, 271–283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anh, P.N.: Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities. J. Optim. Theory Appl. 154, 303–320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anh, P.N.: A logarithmic quadratic regularization method for solving pseudomonotone equilibrium problems. Acta Math. Vietnam 34, 183–200 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Anh, P.N.: An LQP regularization method for equilibrium problems on polyhedral. Vietnam J. Math. 36, 209–228 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Anh, P.N., Hien, N.D.: The extragradient-Armijo method for pseudomonotone equilibrium problems and strict pseudocontractions. Fixed Point Theory Appl. 2012, 82 (2012)

    Article  MathSciNet  Google Scholar 

  6. Anh, P.N., Kim, J.K.: Outer approximation algorithms for pseudomonotone equilibrium problems. Comput. Math. Appl. 61, 2588–2595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anh, P.N., Kim, J.K., Nam, J.M.: Strong convergence of an extragradient method for equilibrium problems and fixed point problems. J. Korean Math. Soc. 49, 187–200 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Anh, P.N., Son, D.X.: A new iterative scheme for pseudomonotone equilibrium problems and a finite family of pseudocontractions. J. Appl. Math. Inform. 29, 1179–1191 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Blum, E., Oettli, W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127–149 (1994)

    MathSciNet  Google Scholar 

  10. Ceng, L.C., Cubiotti, P., Yao, J.C.: An implicit iterative scheme for monotone variational inequalities and fixed point problems. Nonlinear Anal. 69, 2445–2457 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Facchinei, F., Pang, J.S.: Finite-Dimensional variational inequalities and complementarity problems. Springer-Verlag, New York (2003)

    Google Scholar 

  13. Iusem, A.N., Sosa, W.: On the proximal point method for equilibrium problems in Hilbert spaces. Optim. 59, 1259–1274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119, 317–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer-Verlag, Berlin (2000)

    Google Scholar 

  16. Korpelevich, G.M.: Extragradient method for finding saddle points and other problems. Matecon. 12, 747–756 (1976)

    MATH  Google Scholar 

  17. Martinet, B.: Régularisation ďinéquations variationelles par approximations successives. Rev. Franc. Automat. Inform. 4, 154–158 (1970)

    MathSciNet  MATH  Google Scholar 

  18. Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  19. Mastroeni, G.: Gap function for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moudafi, A.: Proximal point algorithm extended to equilibrium problem. J. Nat. Geom. 15, 91–100 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constraint equilibria. Nonlinear Anal. Theory 18, 1159–1166 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Noor, M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122, 371–386 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Quoc, T.D., Anh, P.N., Muu, L.D.: Dual extragradient algorithms to equilibrium problems. J. Glob. Optim. 52, 139–159 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Takahashi, S., Toyoda, M.: Weakly convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Takahashi, S., Takahashi, M.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tran, Q.D., Muu, L.D., Hien, N.V.: Extragradient algorithms extended to equilibrium problems. Optim. 57, 749–776 (2008)

    Article  MATH  Google Scholar 

  27. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referee for his/her really helpful and constructive comments in improving the paper. This work is supported by the Vietnam Institute for Advanced Study in Mathematics (VIASM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham N. Anh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, P.N., Hien, N.D. HYBRID PROXIMAL POINT AND EXTRAGRADIENT ALGORITHMS FOR SOLVING EQUILIBRIUM PROBLEMS. Acta Math Vietnam 39, 405–423 (2014). https://doi.org/10.1007/s40306-014-0070-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-014-0070-3

Keywords

Mathematics Subject Classification (2010)

Navigation