Abstract
We propose new iteration methods for finding a common point of the solution set of a pseudomonotone equilibrium problem and the solution set of a monotone equilibrium problem. The methods are based on both the extragradient-type method and the viscosity approximation method. We obtain weak convergence theorems for the sequences generated by these methods in a real Hilbert space.
Similar content being viewed by others
References
Anh, P.N.: A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optim. 62, 271–283 (2013)
Anh, P.N.: Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities. J. Optim. Theory Appl. 154, 303–320 (2012)
Anh, P.N.: A logarithmic quadratic regularization method for solving pseudomonotone equilibrium problems. Acta Math. Vietnam 34, 183–200 (2009)
Anh, P.N.: An LQP regularization method for equilibrium problems on polyhedral. Vietnam J. Math. 36, 209–228 (2008)
Anh, P.N., Hien, N.D.: The extragradient-Armijo method for pseudomonotone equilibrium problems and strict pseudocontractions. Fixed Point Theory Appl. 2012, 82 (2012)
Anh, P.N., Kim, J.K.: Outer approximation algorithms for pseudomonotone equilibrium problems. Comput. Math. Appl. 61, 2588–2595 (2011)
Anh, P.N., Kim, J.K., Nam, J.M.: Strong convergence of an extragradient method for equilibrium problems and fixed point problems. J. Korean Math. Soc. 49, 187–200 (2012)
Anh, P.N., Son, D.X.: A new iterative scheme for pseudomonotone equilibrium problems and a finite family of pseudocontractions. J. Appl. Math. Inform. 29, 1179–1191 (2011)
Blum, E., Oettli, W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127–149 (1994)
Ceng, L.C., Cubiotti, P., Yao, J.C.: An implicit iterative scheme for monotone variational inequalities and fixed point problems. Nonlinear Anal. 69, 2445–2457 (2008)
Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)
Facchinei, F., Pang, J.S.: Finite-Dimensional variational inequalities and complementarity problems. Springer-Verlag, New York (2003)
Iusem, A.N., Sosa, W.: On the proximal point method for equilibrium problems in Hilbert spaces. Optim. 59, 1259–1274 (2010)
Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 119, 317–333 (2003)
Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer-Verlag, Berlin (2000)
Korpelevich, G.M.: Extragradient method for finding saddle points and other problems. Matecon. 12, 747–756 (1976)
Martinet, B.: Régularisation ďinéquations variationelles par approximations successives. Rev. Franc. Automat. Inform. 4, 154–158 (1970)
Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht (2003)
Mastroeni, G.: Gap function for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003)
Moudafi, A.: Proximal point algorithm extended to equilibrium problem. J. Nat. Geom. 15, 91–100 (1999)
Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constraint equilibria. Nonlinear Anal. Theory 18, 1159–1166 (1992)
Noor, M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122, 371–386 (2004)
Quoc, T.D., Anh, P.N., Muu, L.D.: Dual extragradient algorithms to equilibrium problems. J. Glob. Optim. 52, 139–159 (2012)
Takahashi, S., Toyoda, M.: Weakly convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)
Takahashi, S., Takahashi, M.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007)
Tran, Q.D., Muu, L.D., Hien, N.V.: Extragradient algorithms extended to equilibrium problems. Optim. 57, 749–776 (2008)
Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)
Acknowledgements
We are very grateful to the anonymous referee for his/her really helpful and constructive comments in improving the paper. This work is supported by the Vietnam Institute for Advanced Study in Mathematics (VIASM).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Anh, P.N., Hien, N.D. HYBRID PROXIMAL POINT AND EXTRAGRADIENT ALGORITHMS FOR SOLVING EQUILIBRIUM PROBLEMS. Acta Math Vietnam 39, 405–423 (2014). https://doi.org/10.1007/s40306-014-0070-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40306-014-0070-3