Skip to main content

Smooth normal forms for integrable Hamiltonian systems near a focus–focus singularity

Abstract

We prove that completely integrable systems are normalizable in the C category near a focus–focus singularity.

This is a preview of subscription content, access via your institution.

Notes

  1. p N+1p N .

References

  1. Belitskii, G.R., Kopanskii, A.Ya.: Equivariant Sternberg–Chen theorem. J. Dyn. Differ. Equ. 14(2), 349–367 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borel, E.: Mémoire sur les séries divergentes. Ann. Sci. Éc. Norm. Super. 16, 9–131 (1899)

    MathSciNet  MATH  Google Scholar 

  3. Chaperon, M.: Quelques outils de la théorie des actions différentiables. In: IIIe rencontre de géométrie de Schnepfenried. Astérisque, vol. 107–108 (1982)

    Google Scholar 

  4. Chaperon, M.: Géométrie différentielle et singularités de systèmes dynamiques, No. 138–139. Société Mathématique de France, Paris (1986)

    Google Scholar 

  5. Chaperon, M.: Normalisation of the smooth focus–focus: a simple proof. With an appendix by Jiang Kai. Acta Math. Vietnam. (2013). doi:10.1007/s40306-012-0003-y

    Google Scholar 

  6. Colin de Verdière, Y., Vey, J.: Le lemme de Morse isochore. Topology 18, 283–293 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eliasson, L.H.: Hamiltonian systems with Poisson commuting integrals. Ph.D. thesis, University of Stockholm (1984)

  8. Miranda, E., Vũ Ngọc, S.: A singular Poincaré lemma. Int. Math. Res. Not. 2005(1), 27–45 (2005)

    Article  MATH  Google Scholar 

  9. Miranda, E., Zung, N.T.: Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems. Ann. Sci. Éc. Norm. Super. 37(6), 819–839 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Vey, J.: Sur certains systèmes dynamiques séparables. Am. J. Math. 100, 591–614 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vũ Ngọc, S.: On semi-global invariants for focus–focus singularities. Topology 42(2), 365–380 (2003)

    Article  MathSciNet  Google Scholar 

  12. Williamson, J.: On the algebraic problem concerning the normal form of linear dynamical systems. Am. J. Math. 58(1), 141–163 (1936)

    Article  Google Scholar 

  13. Zung, N.T.: Another note on focus–focus singularities. Lett. Math. Phys. 60, 87–99 (2003)

    Article  MathSciNet  Google Scholar 

  14. Zung, N.T.: Torus actions and integrable systems. In: Bolsinov, A.V., Fomenko, A.T., Oshmenko, A.A. (eds.) Topological Methods in the Theory of Integrable Systems, pp. 289–330. Cambridge Scientific Publishers, Cambridge (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Wacheux.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vũ Ngọc, S., Wacheux, C. Smooth normal forms for integrable Hamiltonian systems near a focus–focus singularity. Acta Math Vietnam. 38, 107–122 (2013). https://doi.org/10.1007/s40306-013-0012-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-013-0012-5

Keywords

  • Integrable systems
  • Normal forms
  • Focus–focus singularities
  • Lagrangian foliations
  • Hamiltonian actions

Mathematics Subject Classification (2010)

  • 37J05
  • 53D12
  • 53D20
  • 70G60
  • 70H33