Skip to main content
Log in

The Low-Rank Approximation of Fourth-Order Partial-Symmetric and Conjugate Partial-Symmetric Tensor

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

We present an orthogonal matrix outer product decomposition for the fourth-order conjugate partial-symmetric (CPS) tensor and show that the greedy successive rank-one approximation (SROA) algorithm can recover this decomposition exactly. Based on this matrix decomposition, the CP rank of CPS tensor can be bounded by the matrix rank, which can be applied to low-rank tensor completion. Additionally, we give the rank-one equivalence property for the CPS tensor based on the SVD of matrix, which can be applied to the rank-one approximation for CPS tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. De Lathauwer, L., Castaing, J., Cardoso, J.-F.: Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 55(6), 2965–2973 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jiang, B., Ma, S., Zhang, S.: Tensor principal component analysis via convex optimization. Math. Program. 150(2), 423–457 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hillar, C.J., Lim, L.-H.: Most tensor problems are np-hard. J. ACM 60(6), 1–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, X., Ling, C., Qi, L.: The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J. Matrix Anal. Appl. 33(3), 806–821 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, Y., Qi, L., Zhang, X.: A practical method for computing the largest m-eigenvalue of a fourth-order partially symmetric tensor. Numer. Linear Algebra Appl. 16(7), 589–601 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, B., Li, Z., Zhang, S.: Characterizing real-valued multivariate complex polynomials and their symmetric tensor representations. SIAM J. Matrix Anal. Appl. 37(1), 381–408 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ni, G.: Hermitian tensors. arXiv:1902.02640v2 (2019)

  10. Nie, J., Yang, Z.: Hermitian tensor decompositions. SIAM J. Matrix Anal. Appl. 41(3), 1115–1144 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aubry, A., De Maio, A., Jiang, B., Zhang, S.: Ambiguity function shaping for cognitive radar via complex quartic optimization. IEEE Trans. Signal Process. 61(22), 5603–5619 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aittomaki, T., Koivunen, V.: Beampattern optimization by minimization of quartic polynomial. In: 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 437–440. IEEE (2009)

  13. Madani, R., Lavaei, J., Baldick, R.: Convexification of power flow equations in the presence of noisy measurements. IEEE Trans. Autom. Control 64(8), 3101–3116 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, T., Jiang, B., Li, Z.: On decompositions and approximations of conjugate partial-symmetric complex tensors. arXiv preprint arXiv:1802.09013 (2018)

  15. Lathauwer, L.D., De Lathauwer, L.: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642–666 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, B., Ma, S., Zhang, S.: Low-m-rank tensor completion and robust tensor pca. IEEE J. Selected Topics Signal Process. 12(6), 1390–1404 (2018)

    Article  Google Scholar 

  17. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. Siam rev. Siam Rev. 43(2) (2001)

  18. De Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Y., Qi, L.: On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors. Numer. Linear Algebra Appl. 14(6), 503–519 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534–550 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fu, T.R., Fan, J.Y.: Successive partial-symmetric rank-one algorithms for almost unitarily decomposable conjugate partial-symmetric tensors. J. Oper. Res. Soc. China 7(1), 147–167 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, B., He, S., Li, Z., Zhang, S.: Maximum block improvement and polynomial optimization. SIAM J. Optim. (2012). https://doi.org/10.1137/110834524

  23. Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534–550 (2001)

  24. Kolda, T., Mayo, J.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuning, Yang, Yunlong, Feng, Xiaolin, Huang, Johan, A.K.: Suykens: Rank-1 tensor properties with applications to a class of tensor optimization problems. SIAM J. Optim. 26(1), 171–196 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Golub, G.H., Van Loan, C.F.: Matrix computations, 4th edn. Johns Hopkins (2013)

  27. Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Program. 128(1–2), 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Y., Dong, M., Xu, Y.: A sparse rank-1 approximation algorithm for high-order tensors. Appl. Math. Lett. 102, 106140 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, X., Navasca, C.: Low rank approximation of tensors via sparse optimization. Numer. Linear Algebra Appl. 25(2), (2017). https://doi.org/10.1002/nla.2136

  32. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Amina Sabir, Peng-Fei Huang and Qing-Zhi Yang designed the algorithms, performed the numerial experiments, drafted the manuscript, read and approved the final manuscript.

Corresponding author

Correspondence to Peng-Fei Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was funded by the National Natural Science Foundation of China (Nos. 11671217 and 12071234) and Key Program of Natural Science Foundation of Tianjin, China (No. 21JCZDJC00220).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabir, A., Huang, PF. & Yang, QZ. The Low-Rank Approximation of Fourth-Order Partial-Symmetric and Conjugate Partial-Symmetric Tensor. J. Oper. Res. Soc. China 11, 735–758 (2023). https://doi.org/10.1007/s40305-022-00425-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-022-00425-5

Keywords

Mathematics Subject Classification

Navigation