Skip to main content
Log in

The Non-inclusion Diagnosability of Hypercubes Under the PMC Model

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

Diagnosability of a multiprocessor system is an important measure of the reliability of interconnection networks. System-level diagnosis is a primary strategy to identify the faulty processors in a multiprocessor system. Based on a sound assumption proposed by Zhu et al. recently, we proposed a new diagnosability named non-inclusion diagnosability and showed that the non-inclusion diagnosability \( t_N(Q_n)\) of the hypercube under the PMC model is \( 2n-2\). That is, assume that if two vertex sets \( F_1\) and \( F_2\) are both consistent with a syndrome and \( F_1\subset F_2\), then \( F_2\) is not the faulty set which we are looking for; the faulty set F is 1-step diagnosable if \( |F|\leqslant 2n-2\) in \( Q_n\) under the PMC model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Maeng, J., Malek, M.: A comparison connection assignment for self-diagnosis of multiprocessors systems. In: Proceedings of 11th International Symposium on Fault-Tolerant Computing, pp. 173–175 (1981)

  2. Preparata, F.P., Metze, G., Chien, R.T.: On the connection assignment problem of diagnosable systems. IEEE Trans. Comput. 16, 848–854 (1967)

    Article  Google Scholar 

  3. Sengupta, A., Dahbura, A.T.: On self-diagnosable multiprocessor systems: diagnosis by the comparison approach. IEEE Trans. Comput. 41, 1386–1396 (1992)

    Article  MathSciNet  Google Scholar 

  4. Ahlswede, R., Aydinian, H.: On diagnosability of large multiprocessor networks. Discrete Appl. Math. 156, 3464–3474 (2008)

    Article  MathSciNet  Google Scholar 

  5. Chiang, C.-F., Hsu, G.-H., Shih, L.-M., Tan, J.J.: Diagnosability of star graphs with missing edges. Inform. Sci. 188, 253–259 (2012)

    Article  MathSciNet  Google Scholar 

  6. Gu, M.-M., Hao, R.-X., Zhou, S.: Fault diagnosability of data center networks. Theor. Comput. Sci. 776, 138–147 (2019)

    Article  MathSciNet  Google Scholar 

  7. Hsieh, S.-Y., Lee, C.-W.: Diagnosability of two-matching composition networks. In: Proceedings of the 14th Annual International Conference on Computing and Combinatorics. pp. 478–486 (2008)

  8. Lian, G., Zhou, S., Hsieh, S.-Y., Liu, J., Chen, G., Wang, Y.: Performance evaluation on hybrid fault diagnosability of regular networks. Theor. Comput. Sci. 796, 147–153 (2019)

    Article  MathSciNet  Google Scholar 

  9. Lv, M., Zhou, S., Liu, J., Sun, X., Lian, G.: Fault diagnosability of DQcube under the PMC model. Discrete Appl. Math. 259, 180–192 (2019)

    Article  MathSciNet  Google Scholar 

  10. Song, S., Zhou, S., Li, X.: Conditional diagnosability of Burnt Pancake networks under the PMC model. Comp. J. 59, 91–105 (2016)

    MathSciNet  Google Scholar 

  11. Stephens, J., Raghavan, V.: On single-fault set diagnosability in the PMC model. IEEE Trans. Comput. 42, 981–983 (1993)

    Article  Google Scholar 

  12. Zhu, Q., Guo, G., Wang, D.: Relating diagnosability, strong diagnosability and conditional diagnosability of strong networks. IEEE Trans. Comput. 63, 1847–1851 (2014)

    Article  MathSciNet  Google Scholar 

  13. Ding, T.T., Xu, M., Zhu, Q.: The non-inclusive diagnosability of hypercubes under the MM* model. Int. J. Found. Comput. Sci. 31, 929–940 (2020)

    Article  MathSciNet  Google Scholar 

  14. Zhu, Q., Guo, G., Tang, W., Zhang, C.-Q.: A diagnosis algorithm by using graph-coloring under the PMC model. J. Comb. Optim. 32, 960–969 (2016)

    Article  MathSciNet  Google Scholar 

  15. Esfahanian, A.H.: Generalized measures of fault tolerance with application to \(n\)-cube networks. IEEE Trans. Comput. 38, 1586–1591 (1989)

    Article  Google Scholar 

  16. Saad, Y., Schultz, M.H.: Topological properties of hypercubes. IEEE Trans. Comput. 37, 867–872 (1988)

    Article  Google Scholar 

  17. Xu, J.-M.: Combinatorial Theory in Networks. Science Press, Beijing, China (2013)

  18. Li, X., Fan, J., Lin, C.-K., Jia, X.: Diagnosability evaluation of the data center network DCell. Comput. J. 61, 129–143 (2018)

    Article  MathSciNet  Google Scholar 

  19. Stewart, I.A.: A general technique to establish the asymptotic conditional diagnosability of interconnection networks. Theor. Comput. Sci. 452, 132–147 (2012)

    Article  MathSciNet  Google Scholar 

  20. Zhang, S., Yang, W.: The \(g\)-extra conditional diagnosability and sequential \(t/k\)-diagnosability of hypercubes. Int. J. Comput. Math. 93, 482–497 (2016)

    Article  MathSciNet  Google Scholar 

  21. Zhu, Q., Li, L., Liu, S., Zhang, X.: Hybrid fault diagnosis capability analysis of hypercubes under the PMC model and MM* model. Theor. Comput. Sci. 758, 1–8 (2019)

    Article  Google Scholar 

  22. Armstrong, J.R., Gray, F.G.: Fault diagnosis in a boolean \(n\)-cube array of multiprocessors. IEEE Trans. Comput. 30, 587–590 (1981)

    Article  Google Scholar 

  23. Dahbura, A.T., Masson, G.M.: An \(O(n^{2.5})\) fault identification algorithm for diagnosable systems. IEEE Trans. Comput 33, 486–492 (1984)

    Article  Google Scholar 

  24. Somani, A.K., Peleg, O.: On diagnosability of large fault sets in regular topology-based computer systems. IEEE Trans. Comput. 45, 892–903 (1996)

    Article  Google Scholar 

  25. Yang, X., Cao, J., Megson, M., Luo, J.: Minimum neighborhood in a generalized cube. Inf. Process. Lett. 97, 88–93 (2006)

    Article  MathSciNet  Google Scholar 

  26. Yang, W., Lin, H.: Reliability evaluation of BC networks in terms of the extra vertex- and edge-connectivity. IEEE Trans. Comput. 63, 2540–2548 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Many of the ideas in this paper were inspired by a course in the School of Mathematical Sciences, BNU. The authors thank the editor and anonymous referees for their helpful comments and kind suggestions on the original manuscript which resulted in this final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 61672025, 60974082, 61179040 and 61075117), Shandong Provincial Natural Science Foundation (No. ZR2021MF012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, MJ., Xu, M., Ding, TT. et al. The Non-inclusion Diagnosability of Hypercubes Under the PMC Model. J. Oper. Res. Soc. China 12, 478–484 (2024). https://doi.org/10.1007/s40305-022-00421-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-022-00421-9

Keywords

Mathematics Subject Classification

Navigation