Skip to main content
Log in

A Sequential Regression Model for Big Data with Attributive Explanatory Variables

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

As the applications for modeling of big data and analysis advance in scope, computational efficiency faces greater challenges in terms of storage and speed. In many practical problems, a great amount of historical data is sequentially collected and used for online statistical modeling. For modeling sequential data, we propose a sequential linear regression method that extracts essential information from historical data. This carefully selected information is then utilized to update a model according to a sequential estimation scheme. With this technique, the earlier data no longer needs to be stored, and the sequential updating is computationally efficient in speed and storage. A weighted strategy is introduced on the current model to determine the impact of data from different periods. When compared with estimation methods that use historical data, our numerical experiments demonstrate that our solution increases the speed while decreasing the storage load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Philip Chen, C., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf Sci 275, 314–347 (2014)

    Article  Google Scholar 

  2. Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., Zhou, X.: Big data challenge: a data management perspective. Front. Comput. Sci. 7(2), 157–164 (2013)

    Article  MathSciNet  Google Scholar 

  3. Menard, S.: Applied Logistic Regression Analysis, vol. 106. Sage, Thousand Oaks (2002)

    Google Scholar 

  4. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 607–616 (1996)

    Article  Google Scholar 

  5. Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution that will Transform How We Live, Work and Think. Houghton Mifflin Harcourt, Boston (2013)

    Google Scholar 

  6. Russom, P., et al.: Big data analytics. TDWI Best Practices Report, Fourth Quarter (2011)

  7. Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A.G., Vadali, R., Chen, S., Borthakur, D.: Xoring elephants: novel erasure codes for big data. In: Proceedings of the VLDB Endowment, vol. 6, pp. 325–336. VLDB Endowment (2013)

  8. Chapman, D.G.: The estimation of biological populations. Ann. Math. Stat. 24, 1–15 (1954)

    Article  Google Scholar 

  9. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  10. Stein, C.: A two-sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Stat. 16(3), 243–258 (1945)

    Article  MATH  Google Scholar 

  11. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)

    Google Scholar 

  13. Varian, H.R.: Big data: new tricks for econometrics. J. Econ. Perspect. 28(2), 3–27 (2014)

    Article  Google Scholar 

  14. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012)

    Google Scholar 

  15. Bishop, C.M., et al.: Pattern Recognition and Machine Learning, vol. 1. Springer, New York (2006)

    MATH  Google Scholar 

  16. Wald, A.: Sequential Analysis. Courier Corporation (1973)

  17. Aitken, A.C.: Iv.on least squares and linear combination of observations. Proc. R. Soc. Edinb. 55, 42–48 (1936)

    Article  Google Scholar 

  18. Farin, G.E.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  19. Pozrikidis, C.: Numerical Computation in Science and Engineering, vol. 307. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  20. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  21. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp. 296–303. ACM (2014)

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their constructive and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-Wang Yang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11171322 and 11426236) and the Fundamental Research Funds for the Central Universities (WK0010000051).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, QT., Liu, Y., Zhou, W. et al. A Sequential Regression Model for Big Data with Attributive Explanatory Variables. J. Oper. Res. Soc. China 3, 475–488 (2015). https://doi.org/10.1007/s40305-015-0109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-015-0109-8

Keywords

Mathematics Subject Classification

Navigation