Skip to main content
Log in

Application of the Theory of Tetragonal Curves to the Hierarchy of Extended Volterra Lattices

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

The theory of tetragonal curves is first applied to the study of discrete integrable systems. Based on the discrete Lenard equation, we derive a hierarchy of extended Volterra lattices associated with the discrete \(4\times 4\) matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix for the hierarchy of extended Volterra lattices, we introduce a tetragonal curve, a Baker–Akhiezer function and meromorphic functions on it. We study algebro-geometric properties of the tetragonal curve and asymptotic behaviors of the Baker–Akhiezer function and meromorphic functions near the origin and two infinite points. The straightening out of various flows is precisely given by utilizing the Abel map and the meromorphic differential. We finally obtain Riemann theta function solutions of the entire hierarchy of extended Volterra lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  2. Adler, V.E., Svinolupov, S.I., Yamilov, R.I.: Multi-component Volterra and Toda type integrable equations. Phys. Lett. A 254(1–2), 24–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  4. Bogoyavlensky, O.I.: Some constructions of integrable dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 51(4), 737–766 (1987)

    Google Scholar 

  5. Böhning, C., von Bothmer, H.-C.G., Casnati, G.: Birational properties of some moduli spaces related to tetragonal curves of genus 7. Int. Math. Res. Not. IMRN 2012(22), 5219–5245 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brawner, J.N.: Tetragonal curves, scrolls and K3 surfaces. Trans. Am. Math. Soc. 349(8), 3075–3091 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bulla, W., Gesztesy, F., Holden, H., Teschl, G.: Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies. Mem. Am. Math. Soc. 135(641), 1–79 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Date, E., Tanaka, S.: Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice. Progr. Theoret. Phys. Suppl. 59, 107–125 (1976)

    Article  MathSciNet  Google Scholar 

  9. Deconinck, B., van Hoeij, M.: Computing Riemann matrices of algebraic curves. Phys. D 152–153, 28–46 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dickson, R., Gesztesy, F., Unterkofler, K.: A new approach to the Boussinesq hierarchy. Math. Nachr. 198, 51–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dickson, R., Gesztesy, F., Unterkofler, K.: Algebro-geometric solutions of the Boussinesq hierarchy. Rev. Math. Phys. 11(7), 823–879 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dubrovin, B.A.: Inverse problem for periodic finite-zoned potentials in the theory of scattering. Funct. Anal. Appl. 9(1), 61–62 (1975)

    Article  MATH  Google Scholar 

  13. England, M., Eilbeck, J.C.: Abelian functions associated with a cyclic tetragonal curve of genus six. J. Phys. A 42(9), 095210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Farkas, H.M., Kra, I.: Riemann Surfaces, 2nd edn. Springer, New York (1992)

    Book  MATH  Google Scholar 

  15. Geng, X.G., Cao, C.W.: Decomposition of the \((2 + 1)\)-dimensional Gardner equation and its quasi-periodic solutions. Nonlinearity 14(6), 1433–1452 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geng, X.G., Dai, H.H., Zhu, J.Y.: Decomposition of the discrete Ablowitz-Ladik hierarchy. Stud. Appl. Math. 118(3), 281–312 (2007)

    Article  MathSciNet  Google Scholar 

  17. Geng, X.G., Wu, L.H., He, G.L.: Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions. Phys. D 240(16), 1262–1288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Geng, X.G., Wu, L.H., He, G.L.: Quasi-periodic solutions of the Kaup-Kupershmidt hierarchy. J. Nonlinear Sci. 23(4), 527–555 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy. Adv. Math. 263, 123–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geng, X.G., Zeng, X.: Quasi-periodic solutions of the Belov-Chaltikian lattice hierarchy. Rev. Math. Phys. 29(8), 1750025 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28(2), 739–763 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Geng, X.G., Zeng, X., Wei, J.: The application of the theory of trigonal curves to the discrete coupled nonlinear Schrödigner hierarchy. Ann. Henri Poincaré 20(8), 2585–2621 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Geng, X.G., Li, R.M., Xue, B.: A vector general nonlinear Schrödinger equation with (\(m+n\)) components. J. Nonlinear Sci. 30(3), 991–1013 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the spin-1 Gross-Pitaevskii equation. Commun. Math. Phys. 382(1), 585–611 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gesztesy, F., Ratnaseelan, R.: An alternative approach to algebro-geometric solutions of the AKNS hierarchy. Rev. Math. Phys. 10(3), 345–391 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gesztesy, F., Holden, H.: Soliton Equations and their Algebro-Geometric Solutions II. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  27. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  28. Hietarinta, J., Joshi, N., Nijhoff, F.W.: Discrete Systems and Integrability. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  29. Its, A.R., Matveev, V.B.: Schrödinger operators with finite-gap spectrum and n-soliton solutions of the Korteweg-de Vries equation. Theor. Math. Phys. 23(1), 343–355 (1975)

    Article  Google Scholar 

  30. Krichever, I.M.: Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11(1), 12–26 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lax, P.D.: Periodic solutions of the KdV equation. Commun. Pure Appl. Math. 28(1), 141–188 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144(2), 164–184 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ma, S.H.: Rationality of some tetragonal loci. Algebraic Geom. 1(3), 271–289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchy I. Proc. R. Soc. A 473(2203), 20170232 (2017)

    Article  MATH  Google Scholar 

  36. Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchy II. Proc. R. Soc. A 473(2203), 20170233 (2017)

    Article  MATH  Google Scholar 

  37. Ma, W.X.: \(N\)-soliton solutions and Hirota conditions in \((2+1)\)-dimensions. Opt. Quant. Electron. 52(12), 511 (2020)

    Article  Google Scholar 

  38. Ma, W.X.: \(N\)-soliton solutions and the Hirota condition of a \((2+1)\)-dimensional combined equation. Math. Comput. Simul. 190, 270–279 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ma, W.X.: \(N\)-soliton solutions of a combined pKP-BKP equation. J. Geom. Phys. 165, 104191 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ma, W.X., Yong, X.L., Lü, X.: Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations. Wave Motion 103, 102719 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ma, Y.C., Ablowitz, M.J.: The periodic cubic Schrödinger equation. Stud. Appl. Math. 65(2), 113–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Matveev, V.B.: 30 years of finite-gap integration theory. Phil. Trans. R. Soc. A 366(1867), 837–875 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. McKean, H.P., van Moerbeke, P.: The spectrum of Hill’s equation. Invent. Math. 30(3), 217–274 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  44. Miller, P.D., Ercolani, N.M., Krichever, I.M., Levermore, C.D.: Finite genus solutions to the Ablowitz-Ladik equations. Comm. Pure Appl. Math. 48(12), 1369–1440 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Miranda, R.: Algebraic Curves and Riemann Surfaces. American Mathematical Society, Providence (1995)

    Book  MATH  Google Scholar 

  46. Narita, K.: Soliton solution to extended Volterra equation. J. Phys. Soc. Jpn 51(5), 1682–1685 (1982)

    Article  MathSciNet  Google Scholar 

  47. Novikov, S.P.: A periodic problem for the Korteweg-de Vries equation. Funct. Anal. Appl. 8(3), 236–246 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  48. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons, the Inverse Scattering Methods. Consultants Bureau, New York (1984)

    MATH  Google Scholar 

  49. Previato, E.: Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke. Math. J 52(2), 329–377 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  50. Smirani, M., Akriche, M.: Real elliptic surfaces with double section and real tetragonal curves. Bull. Belg. Math. Soc. Simon Stevin 19(3), 445–460 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Suris, Y.B.: On the \(r\)-matrix interpretation of Bogoyavlensky lattices. Phys. Lett. A 188(3), 256–262 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. Suris, Y.B.: Integrable discretizations of the Bogoyavlensky lattices. J. Math. Phys. 37(8), 3982–3996 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  53. Suris, Y.B.: The Problem of Integrable Discretization: Hamiltonian Approach. Birkhäuser Verlag, Basel (2003)

    Book  MATH  Google Scholar 

  54. Wang, J.P.: Recursion operator of the Narita-Itoh-Bogoyavlensky lattice. Stud. Appl. Math. 129(3), 309–327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc. 371(2), 1483–1507 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, H.W., Tu, G.Z., Oevel, W., Fuchssteiner, B.: Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure. J. Math. Phys. 32(7), 1908–1918 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 11931017, 12171439, 12271490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Geng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Geng, X., Liu, H. et al. Application of the Theory of Tetragonal Curves to the Hierarchy of Extended Volterra Lattices. Commun. Math. Stat. (2023). https://doi.org/10.1007/s40304-022-00330-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40304-022-00330-6

Keywords

Mathematics Subject Classification

Navigation