Skip to main content
Log in

Solving Traveltime Tomography with Deep Learning

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

This paper introduces a neural network approach for solving two-dimensional traveltime tomography (TT) problems based on the eikonal equation. The mathematical problem of TT is to recover the slowness field of a medium based on the boundary measurement of the traveltimes of waves going through the medium. This inverse map is high-dimensional and nonlinear. For the circular tomography geometry, a perturbative analysis shows that the forward map can be approximated by a vectorized convolution operator in the angular direction. Motivated by this and filtered back-projection, we propose an effective neural network architecture for the inverse map using the recently proposed BCR-Net, with weights learned from training datasets. Numerical results demonstrate the efficiency of the proposed neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abadi, M. et al.: Tensorflow: a system for large-scale machine learning., Osdi, 16, 265–283, (2016)

  2. Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 33(12), 124007 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction and the potential costs of AI. Proceed. Nat. Acad. Sci. 117(48), 30088–30095 (2020)

    Article  Google Scholar 

  4. Araya-Polo, M., Jennings, J., Adler, A., Dahlke, T.: Deep-learning tomography. Lead. Edge 37(1), 58–66 (2018)

    Article  Google Scholar 

  5. Backus, G., Gilbert, F.: The resolving power of gross Earth data. Geophys. J. Int. 16(2), 169–205 (1968)

    Article  MATH  Google Scholar 

  6. Bar, L., Sochen, N.: Unsupervised deep learning algorithm for PDE-based forward and inverse problems. arXiv preprint. (2019). arXiv:1904.05417

  7. Berg, J., Nyström, K.: A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317, 28–41 (2018)

    Article  Google Scholar 

  8. Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math. 44(2), 141–183 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Born, M., Wolf, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 3, Oxford: Pergamon, (1965)

  10. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science 355(6325), 602–606 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung, E., Qian, J., Uhlmann, G., Zhao, H.: An adaptive phase space method with application to reflection traveltime tomography. Inverse Probl. 27(11), 115002 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical CNNs. In: International conference on learning representations. https://openreview.net/forum?id=Hkbd5xZRb, (2018)

  13. Colbrook, M.J., Antun, V., Hansen, A.C.: Can stable and accurate neural networks be computed?–on the barriers of deep learning and smale’s 18th problem. arXiv preprint. (2021). arXiv:2101.08286

  14. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Hoop, M.V., Lassas, M., Wong, C.A.: Deep learning architectures for nonlinear operator functions and nonlinear inverse problems. arXiv preprint. (2019). arXiv:1912.11090

  16. Deckelnick, K., Elliott, C.M., Styles, V.: Numerical analysis of an inverse problem for the eikonal equation. Numerische Mathematik 119(2), 245 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dozat, T.: Incorporating Nesterov momentum into adam. In: International Conference on Learning Representations. (2016)

  18. E Weinan, Y.B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6(1), 1–12 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fan, Y., Bohorquez, C.O., Ying, L.: BCR-Net: a neural network based on the nonstandard wavelet form. J. Comput. Phys. 384, 1–15 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan, Y., Feliu-Fabà, J., Lin, L., Ying, L., Zepeda-Núñez, L.: A multiscale neural network based on hierarchical nested bases. Res. Math. Sci. 6(2), 21 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan, Yuwei., Lin, Lin., Ying, Lexing., Zepeda-Núñez, Leonardo.: A multiscale neural network based on hierarchical matrices. arXiv preprint. (2018). arXiv:1807.01883

  22. Fan, Y., Ying, L.: Solving electrical impedance tomography with deep learning. arXiv preprint. (2019). arXiv:1906.03944

  23. Fan, Y., Ying, L.: Solving optical tomography with deep learning. arXiv preprint. (2019). arXiv:1910.04756

  24. Feliu-Faba, J., Fan, Y., Ying, L.: Meta-learning pseudo-differential operators with deep neural networks. arXiv preprint. (2019). arXiv:1906.06782

  25. Genzel, M., Macdonald, J., März, M.: Solving inverse problems with deep neural networks–robustness included?. arXiv preprint. (2020). arXiv:2011.04268

  26. Gilton, D., Ongie, G., Willett, R.: Neumann networks for linear inverse problems in imaging. IEEE Trans. Comput. Imag. 6, 328–343 (2019)

    Article  MathSciNet  Google Scholar 

  27. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. 249–256. (2010)

  28. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning, MIT press Cambridge, 1. (2016)

  29. Gottschling, N.M., Antun, V., Adcock, B., Hansen, A.C.: The troublesome kernel: why deep learning for inverse problems is typically unstable. arXiv preprint. (2020). arXiv:2001.01258

  30. Han, J., Jentzen, A., E, W.: Solving high-dimensional partial differential equations using deep learning. Proceed. Nat. Academy Sci. 115(34), 8505–8510 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Han, J., Zhang, L., Car, R., E, W.: Deep potential: a general representation of a many-body potential energy surface. Commun. Comput. Phys. 23(3), 629–639 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hauptmann, A., Adler, J., Arridge, S., Öktem, O.: Multi-scale learned iterative reconstruction. IEEE Trans. Comput. Imag. 6, 843–856 (2020)

    Article  Google Scholar 

  33. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  34. Hoole, S., Ratnajeevan, H.: Artificial neural networks in the solution of inverse electromagnetic field problems. IEEE Trans. Magn. 29(2), 1931–1934 (1993)

    Article  Google Scholar 

  35. Ishii, H.: A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of eikonal type. Proceed. Am. Math. Soc. (1987)

  36. Jin, X., Wang, L.V.: Thermoacoustic tomography with correction for acoustic speed variations. Phys. Med. Biol. 51(24), 6437 (2006)

    Article  Google Scholar 

  37. Kabir, H., Wang, Y., Yu, M., Zhang, Q.J.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microw. Theory Tech. 56(4), 867–879 (2008)

    Article  Google Scholar 

  38. Kao, Chiu-Yen., Osher, S., Tsai, Y.H.: Fast sweeping methods for static Hamilton-Jacobi equations. SIAM J. Numer. Anal. 42(6), 2612–2632 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with artificial neural networks. arXiv preprint. (2017). arXiv:1707.03351

  40. Khoo, Y., Lu, J., Ying, L.: Solving for high-dimensional committor functions using artificial neural networks. Res Math Sci 6(1), 1 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Khoo, Y., Ying, L.: SwitchNet: a neural network model for forward and inverse scattering problems. arXiv preprint. (2018). arXiv:1810.09675

  42. Kosovichev, A.G.: Tomographic imaging of the Sun’s interior. Astrophys. J. Lett. 461(1), L55 (1996)

    Article  Google Scholar 

  43. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - vol. 1, NIPS’12, Curran Associates Inc., USA, 1097–1105, (2012)

  44. Kutyniok, G., Petersen, P., Raslan, M., Schneider, R.: A theoretical analysis of deep neural networks and parametric PDEs. arXiv preprint. (2019). arXiv:1904.00377

  45. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)

    Article  Google Scholar 

  46. Leung, M.K.K., Xiong, H.Y., Lee, L.J., Frey, B.J.: Deep learning of the tissue-regulated splicing code. Bioinformatics 30(12), i121–i129 (2014)

    Article  Google Scholar 

  47. Leung, S., Qian, J.: An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals. Commun. Math. Sci. 4(1), 249–266 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, Y., Lu, J., Mao, A.: Variational training of neural network approximations of solution maps for physical models. arXiv preprint. (2019). arXiv:1905.02789

  49. Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-net: Learning PDEs from data. In: Proceedings of the 35th International Conference on Machine Learning, Dy, Jennifer, Krause, Andreas, Proceedings of Machine Learning Research, 80, PMLR, Stockholmsmässan, Stockholm Sweden. pp 3208–3216 (2018). http://proceedings.mlr.press/v80/long18a.html

  50. Lucas, A., Iliadis, M., Molina, R., Katsaggelos, A.K.: Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process. Mag. 35(1), 20–36 (2018)

    Article  Google Scholar 

  51. Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E., Svetnik, V.: Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55(2), 263–274 (2015)

    Article  Google Scholar 

  52. Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: interpretable, efficient deep learning for signal and image processing. IEEE Signal Process. Mag. 38(2), 18–44 (2021)

    Article  Google Scholar 

  53. Munk, W., Worcester, P., Wunsch, C.: Ocean acoustic tomography, Cambridge university press, (2009)

  54. Popovici, A.M., Sethian, J.: Three dimensional traveltime computation using the fast marching method, Seg technical program expanded abstracts 1997. Society of Exploration Geophysicists. 1778–1781 (1997)

  55. Putzky, Patrick: Welling, Max, Invert to learn to invert. Adv. Neural Inf. Process. Syst. 32, 446–456 (2019)

    Google Scholar 

  56. Qian, J., Zhang, Y.T., Zhao, H.K.: Fast sweeping methods for eikonal equations on triangular meshes. SIAM J. Numer. Anal. 45(1), 83–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  59. Rawlinson, N., Pozgay, S., Fishwick, S.: Seismic tomography: a window into deep Earth. Phys. Earth Planet. Inter. 178(3–4), 101–135 (2010)

    Article  Google Scholar 

  60. Rudd, K., Ferrari, S.: A constrained integration (CINT) approach to solving partial differential equations using artificial neural networks. Neurocomputing 155, 277–285 (2015)

    Article  Google Scholar 

  61. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). (ISSN=0893-6080)

    Article  Google Scholar 

  62. Schomberg, H.: An improved approach to reconstructive ultrasound tomography. J. Phys. D Appl. Phys. 11(15), L181 (1978)

    Article  Google Scholar 

  63. Schuster, G.T., Quintus-Bosz, A.: Wavepath eikonal traveltime inversion: theory. Geophysics 58(9), 1314–1323 (1993)

    Article  Google Scholar 

  64. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  65. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems 27, Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Curran Associates, Inc., 3104–3112, (2014)

  66. Tan, C., Lv, S., Dong, F., Takei, M.: Image reconstruction based on convolutional neural network for electrical resistance tomography. IEEE Sens. J. 19(1), 196–204 (2018)

    Article  Google Scholar 

  67. Üstündag, D.: Retrieving slowness distribution of a medium between two boreholes from first arrival traveltimes. Int. J. Geol 2, 1–8, (2008)

  68. Yeung, T.S.A., Chung, E.T., Uhlmann, G.: Numerical inversion of 3d geodesic X-ray transform arising from traveltime tomography. arXiv preprint. (2018). arXiv:1804.10006

  69. Zhang, H.M., Dong, B.: A review on deep learning in medical image reconstruction. J. Oper. Res. Soc. China (2020). https://doi.org/10.1007/s40305-019-00287-4

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74(250), 603–627 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Y.F. and L.Y. is partially supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program. The work of L.Y. is also partially supported by the National Science Foundation under award DMS-1818449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lexing Ying.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Ying, L. Solving Traveltime Tomography with Deep Learning. Commun. Math. Stat. 11, 3–19 (2023). https://doi.org/10.1007/s40304-022-00329-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-022-00329-z

Keywords

Mathematics Subject Classification

Navigation