Skip to main content

Advertisement

Log in

Efficient Fully Discrete Spectral-Galerkin Scheme for the Volume-Conserved Multi-Vesicular Phase-Field Model of Lipid Vesicles with Adhesion Potential

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In this work, we aim to develop an effective fully discrete Spectral-Galerkin numerical scheme for the multi-vesicular phase-field model of lipid vesicles with adhesion potential. The essence of the scheme is to introduce several additional auxiliary variables and design some corresponding auxiliary ODEs to reformulate the system into an equivalent form so that the explicit discretization for the nonlinear terms can also achieve unconditional energy stability. Moreover, the scheme has a full decoupling structure and can avoid calculating variable-coefficient systems. The advantage of this scheme is its high efficiency and ease of implementation, that is, only by solving two independent linear biharmonic equations with constant coefficients for each phase-field variable, the scheme can achieve the second-order accuracy in time, spectral accuracy in space, and unconditional energy stability. We strictly prove that the fully discrete energy stability that the scheme holds and give a detailed step-by-step implementation process. Further, numerical experiments are carried out in 2D and 3D to verify the convergence rate, energy stability, and effectiveness of the developed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aland, S., Egerer, S., Lowengrub, J., Voigt, A.: Diffuse interface models of locally inextensible vesicles in a viscous fluid. J. Comput. Phys. 277, 32–47 (2014)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  2. Campelo, F., Hernandez-Machado, A.: Shape instabilities in vesicles: a phase-field model. Eur. Phys. J. Spec. Top. 143, 101–108 (2007)

    Article  Google Scholar 

  3. Chen, C., Yang, X.: Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn–Hilliard model. Comput. Methods Appl. Mech. Eng. 351, 35–59 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. Chen, Q., Shen, J.: Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40, A3982–A4006 (2018)

    Article  MathSciNet  Google Scholar 

  5. Du, Q., Li, M., Liu, C.: Analysis of a phase field Navier–Stokes vesicle-fluid interaction model. Discrete Cont. Dyn. Syst. B 8(3), 539–556 (2007)

    MathSciNet  Google Scholar 

  6. Du, Q., Liu, C., Ryham, R., Wang, X.: A phase field formulation of the Willmore problem. Nonlinearity 18, 1249–1267 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. Du, Q., Zhang, J.: Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations. SIAM J. Sci. Comput. 30(3), 1634–1657 (2008)

    Article  MathSciNet  Google Scholar 

  9. Du, Q., Zhu, L.: Analysis of a mixed finite element method for a phase field bending elasticity model of vesicle membrane deformation. J. Comput. Math. 24, 265–280 (2006)

    MathSciNet  Google Scholar 

  10. Funkhouser, C., Solis, F., Thorton, K.: Coupled composition–deformation phase-field method for multicomponent lipid membranes. Phys. Rev. E 76, 011912 (2007)

    Article  ADS  Google Scholar 

  11. Gu, R., Wang, X., Gunzburger, M.: Simulating vesicle-substrate adhesion using two phase field functions. J. Comput. Phys. 275, 626–641 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gu, R., Wang, X., Gunzburger, M.: A two phase field model for tracking vesicle–vesicle adhesion. J. Math. Biol. 73, 1293–1319 (2016)

    Article  MathSciNet  PubMed  Google Scholar 

  13. Guillen-Gonzalez, F., Tierra, G.: Unconditionally energy stable numerical schemes for phase-field vesicle membrane model. J. Comput. Phys. 354, 67–85 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Li, X., Li, T., Tu, R., Pan, K., Chen, C., Yang, X.: Efficient energy stable scheme for volume-conserved phase-field elastic bending energy model of lipid vesicles. J. Comput. Appl. Math. 385, 113177 (2021)

    Article  MathSciNet  Google Scholar 

  15. Lowengrub, J., Ratz, A., Voigt, A.: Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79, 031926 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Marth, W., Aland, S., Voigt, A.: Margination of white blood cells: a computational approach by a hydrodynamic phase field model. J. Fluid Mech. 790, 389–406 (2016)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Rubinstein, J., Sternberg, P.: Nonlocal reaction–diffusion equations and nucleation. IMA J. Appl. Math. 48, 249–264 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  18. Shen, J.: Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MathSciNet  Google Scholar 

  19. Shen, J., Yang, X.: The IEQ and SAV approaches and their extensions for a class of highly nonlinear gradient flow systems. Contemp. Math. 754, 217–245 (2020)

    Article  MathSciNet  Google Scholar 

  20. Siegel, D., Kozlov, M.: The Gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: Relevance to membrane fusion and lipid phase behavior. Biophys. J. 87, 366–374 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, X., Du, Q.: Modelling and simulations of multi-component lipid membranes and open membranes via diffusive interface approaches. J. Math. Biol. 56, 347–371 (2008)

    Article  MathSciNet  PubMed  Google Scholar 

  22. Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge–Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yang, X.: Linear, first and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Yang, X.: A new efficient Fully-decoupled and Second-order time-accurate scheme for Cahn–Hilliard phase-field model of three-phase incompressible flow. Comput. Methods Appl. Mech. Eng. 376, 13589 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  25. Yang, X.: A novel fully-decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier–Stokes equations coupled with mass-conserved Allen–Cahn phase-field model of two-phase incompressible flow. Int. J. Numer. Methods Eng. 122, 1283–1306 (2021)

    MathSciNet  Google Scholar 

  26. Yang, X.: A novel fully-decoupled, second-order and energy stable numerical scheme of the conserved Allen–Cahn type flow-coupled binary surfactant model. Comput. Methods Appl. Mech. Eng. 373, 113502 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  27. Yang, X.: A novel fully-decoupled, second-order time-accurate, unconditionally energy stable scheme for a flow-coupled volume-conserved phase-field elastic bending energy model. J. Comput. Phys. 432, 110015 (2021)

    Article  MathSciNet  Google Scholar 

  28. Yang, X.: A novel second-order time marching scheme for the Navier–Stokes/Darcy coupled with mass-conserved Allen–Cahn phase-field models of two-phase incompressible flow. Comput. Methods Appl. Mech. Eng. 377, 113597 (2021)

    Article  ADS  Google Scholar 

  29. Yang, X.: Fully-discrete spectral-Galerkin scheme with decoupled structure and second-order time accuracy for the anisotropic phase-field dendritic crystal growth model. Int. J. Heat Mass Transf. 180, 121750 (2021)

    Article  Google Scholar 

  30. Yang, X.: Numerical approximations of the Navier–Stokes equation coupled with volume-conserved multi-phase-field vesicles system: fully-decoupled, linear, unconditionally energy stable and second-order time-accurate numerical scheme. Comput. Methods Appl. Mech. Eng. 375, 113600 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  31. Yang, X.: On a novel full decoupling, linear, second-order accurate, and unconditionally energy stable numerical scheme for the anisotropic phase-field dendritic crystal growth model. Int. J. Numer. Methods Eng. 122, 4129–4153 (2021)

    Article  MathSciNet  Google Scholar 

  32. Yang, X., Ju, L.: Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)

    Article  ADS  Google Scholar 

  33. Zhang, G.-D., He, X., Yang, X.: Decoupled, linear, and unconditionally energy stable fully-discrete finite element numerical scheme for a two-phase ferrohydrodynamics model. SIAM J. Sci. Comput. 43, B167–B193 (2021)

    Article  MathSciNet  Google Scholar 

  34. Zhang, J., Das, S., Du, Q.: A phase field model for vesicle-substrate adhesion. J. Comput. Phys. 228, 7837–7849 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zhang, J., Yang, X.: Decoupled, non-iterative, and unconditionally energy stable large time stepping method for the three-phase Cahn–Hilliard phase-field model. J. Comput. Phys. 404, 109115 (2020)

    Article  MathSciNet  Google Scholar 

  36. Zhang, J., Yang, X.: Unconditionally energy stable large time stepping method for the L2-gradient flow based ternary phase-field model with precise nonlocal volume conservation. Comput. Methods Appl. Mech. Eng. 361, 112743 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work of C. Chen was partially supported by National Natural Science Foundation of China(11771375) and Shandong Provincial Natural Science Foundation(ZR2021ZD03, ZR2021MA010). The work of X. Yang was partially supported by National Science Foundation with grant number DMS-2012490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yang, X. Efficient Fully Discrete Spectral-Galerkin Scheme for the Volume-Conserved Multi-Vesicular Phase-Field Model of Lipid Vesicles with Adhesion Potential. Commun. Math. Stat. 12, 15–43 (2024). https://doi.org/10.1007/s40304-021-00278-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-021-00278-z

Keywords

Mathematics Subject Classification

Navigation