Skip to main content
Log in

The Number of Triangles in Random Intersection Graphs

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

Let \(T_n\) be the number of triangles in the random intersection graph G(nmp). When the mean of \(T_n\) is bounded, we obtain an upper bound on the total variation distance between \(T_n\) and a Poisson distribution. When the mean of \(T_n\) tends to infinity, the Stein–Tikhomirov method is used to bound the error for the normal approximation of \(T_n\) with respect to the Kolmogorov metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adell, J.A., Jodrá. P.: Exact Kolmogorov and total variation distances between some familiar discrete distributions. J. Ineq. Appl. 2006, Article 64307 (2006)

  2. Ball, F.G., Sirl, D.J., Trapman, P.: Epidemics on random intersection graphs. Ann. Appl. Probab. 24, 1081–1128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbour, A.D., Karoński, M., Ruciński, A.: A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B. 47, 125–145 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbour, A.D., Reinert, G.: The shortest distance in random multi-type intersection graphs. Random Struct. Algorithms 39, 179–209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Behrisch, M.: Component evolution in random intersection graphs. Electron. J. Combin.14 # R17 (2007)

  6. Bloznelis, M.: Degree and clustering coefficient in sparse random intersection graphs. Ann. Appl. Probab. 23, 1254–1289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloznelis, M., Godehardt, E., Jaworski, J., Kurauskas, V., Rybarczyk, K.: Recent progress in complex network analysis: properties of random intersection graphs. In: Data Science. Learning by Latent Structures, and Knowledge Discovery, pp. 79–88. Springer, Berlin (2015)

  8. Bloznelis, M., Jaworski, J.: The asymptotic normality of the global clustering coefficient in sparse random intersection graphs. Algorithms and models for the web graph, pp. 16–29, Lecture Notes in Comput. Sci., 10836. Springer, Cham (2018)

  9. Bloznelis, M., Kurauskas, V.: Large cliques in sparse random intersection graphs. Electron. J. Combin.24(2), Paper No. 2.5 (2017)

  10. Chatterjee, S.: Large deviations for Random Graphs. École d’Été de Probabilités de Saint Flour XLV, Springer Lecture Notes in Mathematics (2015)

  11. Chatterjee, S.: An introduction to large deviations for random graphs. Bull. Am. Math. Soc. 53, 617–642 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chatterjee, S., Varadhan, S.R.S.: The large deviation principle for the Erdős-Rényi random graph. Eur. J. Combin. 32, 1000–1017 (2011)

    Article  MATH  Google Scholar 

  13. Chen, L.H.Y., Röllin, A.: Stein couplings for normal approximation. Preprint (2010) arXiv:1003.6039

  14. Deijfen, M., Kets, W.: Random intersection graphs with tunable degree distribution and clustering. Probab. Eng. Inf. Sci. 23, 661–674 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Esary, J.D., Proschan, F., Walkup, D.W.: Association of random variables, with applications. Ann. Math. Stat. 38, 1466–1474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fill, J.A., Scheinerman, E.R., Singer-Cohen, K.B.: Random intersection graphs when \(m=\omega (n)\): An equivalence theorem relating the evolution of the \(G(n, m, p)\) and \(G(n, p)\) models. Random Struct. Algorithms 16, 156–176 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grimmett, R.: Percolation, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  18. Janson, S., Luczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  19. Karjalainen, J., Leskelä, L.: Moment-based parameter estimation in binomial random intersection graph models. Algorithms and models for the web graph, pp. 1–15, Lecture Notes in Comput. Sci., 10519. Springer, Cham (2017)

  20. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On random intersection graphs: the subgraph problem. Comb. Probab. Comput. 8, 131–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, J., Lee, S.J., Na, J.: On the total variation distance between the binomial random graph and the random intersection graph. Random Struct. Algorithms 52, 662–679 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krokowski, K., Reichenbachs, A., Tha̋le, C.: Discrete Malliavin-Stein method: Berry-Esseen bounds for random graphs and percolation. Ann. Probab. 45, 1071–1109 (2017)

  23. Lagerås, A.N., Lindholm, M.: A note on the component structure in random intersection graphs with tunable clustering. Electron. J. Combin.15 # N10 (2008)

  24. Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74, 119–128 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pietro, R.D., Mancini, L.V., Mei, A. Radhakrishnan, J.: How to design connected sensor networks that are provably secure. Sec. Commun. (2006) http://delis.upb.de/paper/DELIS-TR-0360.pdf

  26. Rennie, B.C., Dobson, A.J.: On stirling numbers of the second kind. J. Combin. Theory 7, 116–121 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  27. Röllin, A.: Kolmogorov bounds for the normal approximation of the number of triangles in the Erdős–Rényi random graph. Preprint. (2017) arXiv:1704.00410

  28. Ruciński, A.: When are small subgraphs of a random graph normally distributed? Probab. Theory Rel. Fields 78, 1–10 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rybarczyk, K.: Diameter, connectivity, and phase transition of the uniform random intersection graph. Discrete Math. 311, 1998–2019 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rybarczyk, K., Stark, D.: Poisson approximation of the number of cliques in random intersection graphs. J. Appl. Probab. 47, 826–840 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Singer-Cohen, K.B.: Random intersection graphs. Ph.D. thesis, Department of Mathematical Sciences, The John Hopkins University (1995)

  32. Stark, D.: The vertex degree distribution of random intersection graphs. Random Struct. Algorithms 24, 249–258 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematics Statistics and Probability, Vol. II: Probability theory, pp. 583–602 (1972)

  34. Tikhomirov, A.N.: Convergence rate in the central limit theorem for weakly dependent random variables. Theory Probab. Appl. 25, 790–809 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees for their useful suggestions that greatly improved the presentation of this work. This work is supported by NSFC (Grant No. 11671373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhishui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Hu, Z. The Number of Triangles in Random Intersection Graphs. Commun. Math. Stat. 11, 695–725 (2023). https://doi.org/10.1007/s40304-021-00270-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-021-00270-7

Keywords

Mathematics Subject Classification

Navigation