Skip to main content
Log in

A Spectral Segmentation Method for Large Meshes

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

Mesh segmentation is a fundamental and critical task in mesh processing, and it has been studied extensively in computer graphics and geometric modeling communities. However, current methods are not well suited for segmenting large meshes which are now common in many applications. This paper proposes a new spectral segmentation method specifically designed for large meshes inspired by multi-resolution representations. Building on edge collapse operators and progressive mesh representations, we first devise a feature-aware simplification algorithm that can generate a coarse mesh which keeps the same topology as the input mesh and preserves as many features of the input mesh as possible. Then, using the spectral segmentation method proposed in Tong et al. (IEEE Trans Vis Comput Graph 26(4):1807–1820, 2020), we perform partition on the coarse mesh to obtain a coarse segmentation which mimics closely the desired segmentation of the input mesh. By reversing the simplification process through vertex split operators, we present a fast algorithm which maps the coarse segmentation to the input mesh and therefore obtain an initial segmentation of the input mesh. Finally, to smooth some jaggy boundaries between adjacent parts of the initial segmentation or align with the desired boundaries, we propose an efficient method to evolve those boundaries driven by geodesic curvature flows. As demonstrated by experimental results on a variety of large meshes, our method outperforms the state-of-the-art segmentation method in terms of not only speed but also usability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Au, O.K.C., Zheng, Y.Y., Chen, M.L., Xu, P.F., Tai, C.L.: Mesh segmentation with concavity-aware fields. IEEE Trans. Vis. Comput. Graph. 18(7), 1125–1134 (2012)

    Article  Google Scholar 

  2. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Levy, B.: Polygon Mesh Processing. A K Peters/CRC Press (2010)

  3. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceedings of IEEE International Conference on Computer Vision, ICCV ’95, pp. 694–699 (1995)

  4. Chahhou, M., Moumoun, L., El Far, M., Gadi, T.: Segmentation of 3D meshes using p-spectral clustering. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1687–1693 (2014)

    Article  Google Scholar 

  5. Chen, X.B., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28(3), 73:1–73:12 (2009)

  6. Cignoni, P., Montani, C., Scopigno, R.: A comparison of mesh simplification algorithms. Comput. Graph. 22(1), 37–54 (1998)

    Article  MATH  Google Scholar 

  7. Crane, K., Weischedel, C., Wardetzky, M.: The heat method for distance computation. Commun. ACM 60(11), 90–99 (2017)

    Article  Google Scholar 

  8. Dey, T.K., Edelsbrunner, H., Guha, S., Nekhayev, D.V.: Topology preserving edge contraction. Publ. Inst. Math. (Beograd) (N.S 66, 23–45 (1999)

  9. Falcidieno, B., et al.: Aim@shape repository. http://visionair.ge.imati.cnr.it/ontologies/shapes/ (2020)

  10. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216 (1997)

  11. Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: Proceedings of the Conference on Visualization ’98, VIS ’98, pp. 263–269 (1998)

  12. Guennebaud, G., Jacob, B., et al.: Eigen. http://eigen.tuxfamily.org/ (2020)

  13. Guo, K., Zou, D., Chen, X.: 3D mesh labeling via deep convolutional neural networks. ACM Trans. Graph. 35(1), 3:1–3:12 (2015)

  14. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108 (1996)

  15. Hoppe, H.: New quadric metric for simplifying meshes with appearance attributes. In: Proceedings of the 10th IEEE Visualization 1999 Conference (VIS ’99), Visualization ’99, pp. 59–66 (1999)

  16. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29(4), 102:1–102:12 (2010)

  17. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  18. Levoy, M., et al.: The stanford 3d scanning repository. http://graphics.stanford.edu/data/ (2020)

  19. Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, Pacific Graphics’04, pp. 298–305. IEEE Computer Society (2004)

  20. Liu, R., Zhang, H.: Mesh segmentation via spectral embedding and contour analysis. Comput. Graph. Forum 26(3), 385–394 (2007)

    Article  Google Scholar 

  21. Liu, Z., Zhang, H., Wu, C.: On geodesic curvature flow with level set formulation over triangulated surfaces. J. Sci. Comput. 70(2), 631–661 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kaufmann Publishers (2003)

  23. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  24. Popović, J., Hoppe, H.: Progressive simplicial complexes. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 217–224 (1997)

  25. Rodrigues, R.S.V., Morgado, J.F.M., Gomes, A.J.P.: Part-based mesh segmentation: a survey. Comput. Graph. Forum 37(6), 235–274 (2018)

    Article  Google Scholar 

  26. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  27. Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008)

    Article  MATH  Google Scholar 

  28. Theologou, P., Pratikakis, I., Theoharis, T.: Unsupervised spectral mesh segmentation driven by heterogeneous graphs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 397–410 (2017)

    Article  Google Scholar 

  29. Theologou, P., Pratikakis, L., Theoharis, T.: A comprehensive overview of methodologies and performance evaluation frameworks in 3D mesh segmentation. Comput. Vis. Image Underst. 135, 49–82 (2015)

    Article  Google Scholar 

  30. Tong, W., Yang, X., Pan, M., Chen, F.: Spectral mesh segmentation via \(\ell _0\) gradient minimization. IEEE Trans. Vis. Comput. Graph. 26(4), 1807–1820 (2020)

    Google Scholar 

  31. Wang, H., Lu, T., Au, O.K.C., Tai, C.L.: Spectral 3D mesh segmentation with a novel single segmentation field. Graph. Models 76, 440–456 (2014)

    Article  Google Scholar 

  32. Wu, C., Tai, X.: A level set formulation of geodesic curvature flow on simplicial surfaces. IEEE Trans. Visual Comput. Graph. 16(04), 647–662 (2010)

    Article  Google Scholar 

  33. Yu, F., Liu, K., Zhang, Y., Zhu, C., Xu, K.: Partnet: A recursive part decomposition network for fine-grained and hierarchical shape segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), CVPR’2019, pp. 9483–9492. IEEE Computer Society (2019)

  34. Zhang, H., Liu, R.: Mesh segmentation via recursive and visually salient spectral cuts. In: Proc. of Vision, Modeling, and Visualization, pp. 429–436 (2005)

  35. Zhang, J.Y., Zheng, J.M., Wu, C.L., Cai, J.F.: Variational mesh decomposition. ACM Trans. Graph. 31(3), 21:1–21:14 (2012)

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their comments and suggestions. This work was supported by the National Natural Science Foundation of China (Nos. 61877056, 61972368) and the Anhui Provincial Natural Science Foundation, PR China (No. 1908085QA11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Tong, W. & Chen, F. A Spectral Segmentation Method for Large Meshes. Commun. Math. Stat. 11, 583–607 (2023). https://doi.org/10.1007/s40304-021-00265-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-021-00265-4

Keywords

Mathematics Subject Classification

Navigation