Skip to main content
Log in

Nonparametric estimation for stationary and strongly mixing processes on Riemannian manifolds

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In this paper, nonparametric estimation for a stationary strongly mixing and manifold-valued process \((X_j)\) is considered. In this non-Euclidean and not necessarily i.i.d setting, we propose kernel density estimators of the joint probability density function, of the conditional probability density functions and of the conditional expectations of functionals of \(X_j\) given the past behavior of the process. We prove the strong consistency of these estimators under sufficient conditions, and we illustrate their performance through simulation studies and real data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian geometry. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Chavel, I.: Riemannian geometry: a modern introduction. In: Cambridge Tracts in Mathematics vol. 108. Cambridge University Press, Cambridge (1993)

  3. Do Carmo, M.: Riemannian Geometry. Birkhauser Boston Inc, Boston (1992)

    Book  MATH  Google Scholar 

  4. Do Carmo, M.: Geometria Riemaniana, 2nd edn. Proyecto Euclides IMPA, Colchester (1988)

    Google Scholar 

  5. Chevallier, E., Forget, T., Barbaresco, F., Angulo, J.: Kernel density estimation on the Siegel space with an application to Radar Processing. Entropy 18(11), 396 (2016)

    Article  Google Scholar 

  6. Dai, X., Muller, H.: Principal component analysis for functional data on Riemannian manifold and spheres. Ann. Stat. 46(6B), 3334–3361 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Emmanuel, R.: Covariance inequalities for strongly mixing processes. Ann. Prob. Stat. 29(4), 587–597 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Gamea, O., Bécigneul, G., Hofmann, T.: Hyperbolic neural network. In: Advances in Neutral information Processing Systems, pp. 5350–5360 (2018)

  9. Henry, G., Rodriguez, D.: Kernel density estimation on Riemannian manifolds: asymptotic results. J. Math. Imaging Vis. 34, 235–239 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kesavan, S.: Measure and Integration. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  11. Loeve, M.: Probability Theory, 4th edn. Springer, New York (2017)

    MATH  Google Scholar 

  12. Masry, E.: Almost sure convergence of recursive density estimators for stationary mixing processes. Stat. Prob. Lett. 5, 204–207 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Masry, E.: Nonparametric estimation of conditional probability densities and expectations of stationary processes strong consistency and rates. Stoch. Process. Appl. 32, 109–127 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mokkade, A.: Mixing properties of ARMA process. Stoch. Process. Appl. 29(2), 309–315 (1988)

    Article  Google Scholar 

  15. Ovinnikov, I.: Poincaré Wasserstein Auntoencoder. In: Third Workshop on Bayesian Deep Learning. Montréal, Canada (2019)

  16. Patrangenaru, V., Ellingson, L.: Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  17. Pelletier, B.: Nonparametric regression estimation on closed Riemannian manifolds. J. Nonparametr. Stat. 18, 57–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pelletier, B.: Kernel density estimation on Riemannian manifolds. Stat. Probab. Lett. 73(3), 297–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pennec, X.: Probabilities and statistics on Riemannian manifolds: basic tools for geometric measurements. In: Proceedings of Nonlinear Signal and Image Processing (NSIP’99), pp. 194–198 (1999)

  20. Petersen, P.: Riemannian geometry 2nd ed. In: Graduate Texts in Mathematics, vol. 171. Springer, New York (2006)

  21. Pfaff, B.: Analysis of Integrated and Cointegrated Time series with R. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  22. R Development Core Team: R: A language and environment for statistical computing. In: R Foundation for Statistical Computing Vienna Austria. ISBN 3-900051-07-0. http://www.R-project.org (2010)

  23. Said, S., Bombrun, L., Berthoumieu, Y.: New Riemannian priors on the univariate normal model. Entropy 16(7), 4015–4031 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1996)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for a most careful reading of the manuscript and constructive comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freedath Djibril Moussa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gbaguidi Amoussou, A.T., Djibril Moussa, F., Ogouyandjou, C. et al. Nonparametric estimation for stationary and strongly mixing processes on Riemannian manifolds. Commun. Math. Stat. 10, 599–621 (2022). https://doi.org/10.1007/s40304-020-00237-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-020-00237-0

Keywords

Mathematics Subject Classification

Navigation