Skip to main content
Log in

Canonical Metrics on Holomorphic Filtrations over Compact Hermitian Manifolds

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

The purpose of this paper is twofold. We first solve the Dirichlet problem for \(\tau \)-Hermitian–Einstein equations on holomorphic filtrations over compact Hermitian manifolds. Secondly, by using Uhlenbeck–Yau’s continuity method, we prove the existence of approximate \(\tau \)-Hermitian–Einstein structure on holomorphic filtrations over closed Gauduchon manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez-Cónsul, L., García-Prada, L.: Dimensional reduction, Sl(2,\({\mathbb{C}}\))-equivariant bundles and stable holomorphic chains. Int. J. Math. 12, 159–201 (2001)

    Article  MathSciNet  Google Scholar 

  2. Álvarez-Cónsul, L., García-Prada, L.: Hitchin–Kobayashi correspondence, quivers, and vortices. Commun. Math. Phys. 238, 1–33 (2003)

    Article  MathSciNet  Google Scholar 

  3. Biquard, O.: On parabolic bundles over a complex surface. J. Lond. Math. Soc. 53, 302–316 (1996)

    Article  Google Scholar 

  4. Biswas, I., Schumacher, G.: Yang–Mills equation for stable Higgs sheaves. Int. J. Math. 20, 541–556 (2009)

    Article  MathSciNet  Google Scholar 

  5. Biswas, I., Bruzzo, U., Graña Otero, B., Giudice, A.L.: Yang–Mills–Higgs connections on Calabi–Yau manifolds. Asian J. Math. 20, 989–1000 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bradlow, S.B.: Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys. 135, 1–17 (1990)

    Article  Google Scholar 

  7. Bruzzo, U., Graña Otero, B.: Metrics on semistable and numerically effective Higgs bundles. J. Reine Angew. Math. 612, 59–79 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Bruzzo, U., Graña Otero, B.: Semistable and numerically effective principal (Higgs) bundles. Adv. Math. 226, 3655–3676 (2011)

    Article  MathSciNet  Google Scholar 

  9. Bruzzo, U., Graña Otero, B.: Approximate Hitchin–Kobayashi correspondence for Higgs G-bundles. Int. J. Geom. Methods Mod. Phys. 11, 1460015 (2014)

    Article  MathSciNet  Google Scholar 

  10. Buchdahl, N.P.: Hermitian–Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann. 280, 625–648 (1988)

    Article  MathSciNet  Google Scholar 

  11. Cardona, S.A.H.: Approximate Hermitian–Yang–Mills structures and semistability for Higgs bundles. I: generalities and the one-dimensional case. Ann. Glob. Anal. Geom. 42, 349–370 (2012)

    Article  MathSciNet  Google Scholar 

  12. Donaldson, S.K.: Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. 3, 1–26 (1985)

    Article  MathSciNet  Google Scholar 

  13. Donaldson, S.K.: Boundary value problems for Yang–Mills fields. J. Geom. Phys. 8, 89–122 (1992)

    Article  MathSciNet  Google Scholar 

  14. Gauduchon, P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)

    Article  MathSciNet  Google Scholar 

  15. Hamilton, R.S.: Harmonic Maps of Manifolds with Boundary, vol. 471. Springer, Berlin (2006)

    Google Scholar 

  16. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 3, 59–126 (1987)

    Article  MathSciNet  Google Scholar 

  17. Hong, M.C.: Heat flow for the Yang–Mills–Higgs field and the Hermitian Yang–Mills–Higgs metric. Ann. Glob. Anal. Geom. 20, 23–46 (2001)

    Article  MathSciNet  Google Scholar 

  18. Jacob, A.: Existence of approximate Hermitian–Einstein structures on semi-stable bundles. Asian J. Math. 18, 859–883 (2014)

    Article  MathSciNet  Google Scholar 

  19. Jacob, A., Walpuski, T.: Hermitian Yang–Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds. Commun. PDE 101, 1566–1598 (2018)

    Article  Google Scholar 

  20. Kobayashi, S.: Curvature and stability of vector bundles. Proc. Jpn. Acad. Ser. A 58, 158–162 (1982)

    Article  MathSciNet  Google Scholar 

  21. Kobayashi, S.: Differential Geometry of Complex Vector Bundles, vol. 15. Princeton University Press, Princeton (1987)

    Book  Google Scholar 

  22. Li, J., Yau, S.T.: Hermitian–Yang–Mills connection on non-Kähler manifolds. In: Mathematical Aspects of String Theory, pp. 560–573. World Scientific, New York (1987)

  23. Li, J.Y., Zhang, X.: Existence of approximate Hermitian–Einstein structures on semi-stable Higgs bundles. Calc. Var. 52, 783–795 (2015)

    Article  MathSciNet  Google Scholar 

  24. Li, J.Y., Zhang, C.J., Zhang, X.: Semi-stable Higgs sheaves and Bogomolov type inequality. Calc. Var. 56, 1–33 (2017)

    Article  MathSciNet  Google Scholar 

  25. Li, J.Y., Zhang, C.J., Zhang, X.: The limit of the Hermitian–Yang–Mills flow on reflexive sheaves. Adv. Math. 325, 165–214 (2018)

    Article  MathSciNet  Google Scholar 

  26. Li, J.Y., Zhang, C.J., Zhang, X.: A note on curvature estimate of the Hermitian–Yang–Mills flow. Commun. Math. Stat. 6, 319–358 (2018)

    Article  MathSciNet  Google Scholar 

  27. Li, Z., Zhang, X.: Dirichlet problem for Hermitian Yang–Mills–Higgs equations over Hermitian manifolds. J. Math. Anal. Appl. 310, 68–80 (2005)

    Article  MathSciNet  Google Scholar 

  28. Lübke, M.: Stability of Einstein–Hermitian vector bundles. Manuscr. Math. 42, 245–257 (1983)

    Article  MathSciNet  Google Scholar 

  29. Lübke, M., Teleman, A.: The Kobayashi–Hitchin correspondence. World Scientific Publishing, Singapore (1995)

    Book  Google Scholar 

  30. Lübke, M., Teleman, A.: The Universal Kobayashi–Hitchin Correspondence on Hermitian Manifolds. Mem. AMS, Providence (2006)

    Book  Google Scholar 

  31. Mochizuki, T.: Kobayashi–Hitchin correspondence for tame harmonic bundles and an application. Astérisque Soc. Math. France 309, (2006)

  32. Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. 82, 540–567 (1965)

    Article  MathSciNet  Google Scholar 

  33. Nie, Y., Zhang, X.: Semistable Higgs bundles over compact Gauduchon manifolds. J. Geom. Anal. 28, 627–642 (2018)

    Article  MathSciNet  Google Scholar 

  34. Simpson, C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Am. Math. Soc. 1, 867–918 (1988)

    Article  MathSciNet  Google Scholar 

  35. Taylor, M.E.: Partial Differential Equations I (Applied Mathematical Sciences), vol. 115. Springer, New York (2011)

    Book  Google Scholar 

  36. Uhlenbeck, K.K., Yau, S.T.: On the existence of Hermitian–Yang–Mills connections in stable vector bundles. Commun. Pure Appl. Math. 39S, S257–S293 (1986)

    Article  MathSciNet  Google Scholar 

  37. Zhang, C., Zhang, P., Zhang, X.: Higgs bundles over non-compact Gauduchon manifolds. arXiv:1804.08994 (2018)

  38. Zhang, X.: Hermitian–Einstein metrics on holomorphic vector bundles over Hermitian manifolds. J. Geom. Phys. 53, 315–335 (2005)

    Article  MathSciNet  Google Scholar 

  39. Zhang, X.: Hermitian Yang–Mills–Higgs metrics on complete Kähler manifolds. Can. J. Math. 57, 871–896 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Pan Zhang is supported by the Fundamental Research Funds for the Central Universities (No. 19lgpy239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Zhang, P. Canonical Metrics on Holomorphic Filtrations over Compact Hermitian Manifolds. Commun. Math. Stat. 8, 219–237 (2020). https://doi.org/10.1007/s40304-019-00199-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-019-00199-y

Keywords

Mathematics Subject Classification

Navigation