Communications in Mathematics and Statistics

, Volume 5, Issue 4, pp 399–405 | Cite as

The Structure of a Finite Group Which is the Product of Two Subgroups with Some Subnormal Subgroups

  • Xinjian ZhangEmail author
  • Yong Xu


Let G be a group and \(G=G_1G_2\) where \(G_i\) are subgroups of G. In this paper, we investigate the structure of G under the conditions that some subgroups of \(G_i\) are subnormal in G.


Subnormal subgroup Nilpotent group Solvable group 

Mathematics Subject Classification

20D10 20D15 


  1. 1.
    Wielandt, H.: Eine verallgemeinerung der invarianten untergruppen. Math. Z. 45, 209–244 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ore, O.: Contributions to the theory of finite groups. Duke Math. J. 5, 431–460 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kegel, O.: Sylow-gruppen and subnormalteiler endlicher gruppen. Math. Z. 78, 205–221 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Foguel, T.: Conjugate-permutable subgroups. J. Algebra 191, 235–239 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baer, R.: Classes of finite groups and their properties. Ill. J. Math. 1, 115–187 (1957)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Friesen, D.R.: Products of normal supersolvable subgroups. Proc. Am. Math. Soc. 30, 46–48 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Huppert, B.: Endliche Gruppen I. Springer, New York (1967)CrossRefzbMATHGoogle Scholar
  8. 8.
    Wenbin, G.: The Theory of Classes of Groups. Kluwer Academic publishers, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Doerk, K., Hawkes, T.O.: Finite Soluble Groups. De Gruyter, Berlin (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Shirong, L.: The Deskins index complex and the supersolvability of finite groups. J. Pure Appl. Algebra 144, 297–302 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Xu, M.: An Introduction to Finite Groups. Science Press, Beijing (2007). (Chinese)Google Scholar

Copyright information

© School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesHuaiyin Normal UniversityHuai’anChina
  2. 2.School of Mathematics and StatisticsHenan University of Science and TechnologyLuoyangChina

Personalised recommendations