Skip to main content
Log in

Numerical Simulation of a Class of Nonlinear Wave Equations by Lattice Boltzmann Method

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In this paper, we develop a lattice Boltzmann model for a class of one-dimensional nonlinear wave equations, including the second-order hyperbolic telegraph equation, the nonlinear Klein–Gordon equation, the damped and undamped sine-Gordon equation and double sine-Gordon equation. By choosing properly the conservation condition between the macroscopic quantity \(u_t\) and the distribution functions and applying the Chapman–Enskog expansion, the governing equation is recovered correctly from the lattice Boltzmann equation. Moreover, the local equilibrium distribution function is obtained. The results of numerical examples have been compared with the analytical solutions to confirm the good accuracy and the applicability of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Pozar, D.: Microwave Engineering. Addison-Wesley, NewYork (1990)

    Google Scholar 

  2. Mohebbi, A., Dehghan, M.: High order compact solution of the one-space-dimensional linear hyperbolic equation. Numer Methods Partial Differ. Equ. 24(5), 1222–1235 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jeffrey, A.: Applied Partial Differential Equations. Academic Press, NewYork (2002)

    Google Scholar 

  4. Dehghan, M., Ghesmati, A.: Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method. Eng. Anal. Bound. Elem. 34(1), 51–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mohanty, R.K.: New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations. Int. J. Comput. Math. 86(12), 2061–2071 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pascal, H.: Pressure wave propagation in a fluid flowing through a porous medium and problems related to interpretation of Stoneley’s wave attenuation in a coustical well logging. Int. J. Eng. Sci. 24, 1553–1570 (1986)

    Article  MATH  Google Scholar 

  7. Bohme, G.: Non-Newtonian fluid mechanics. North-Holland, NewYork (1987)

    MATH  Google Scholar 

  8. Evans, D.J., Bulut, H.: The numerical solution of the telegraph equation by the alternating group explicit method. Int. J. Comput. Math. 80, 1289–1297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jordan, P.M., Meyer, M.R., Puri, A.: Causal implications of viscous damping in compressible fluid flows. Phys. Rev. E 62, 7918–7926 (2000)

    Article  Google Scholar 

  10. Greiner, W.: Relativistic Quantum Mechanics-Wave Equations, 3rd edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  11. Scott, A.: Nonlinear Science: Emergence and Dynamics of Coherent Structures. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  12. Dauxois, T., Peyrard, M.: Physics of Solitons. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  13. Liu, L., Liu, H.: Compact difference schemes for solving telegraphic equations with Neumann boundary conditions. Appl. Math. Comput. 219(19), 10112–10121 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Rashidinia, J., Mohammadi, R.: Tension spline approach for the numerical solution of nonlinear Klein–Gordon equation. Comput. Phys. Commun. 181, 78–91 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rashidinia, J., Mohammadi, R.: Tension spline solution of nonlinear sine-Gordon equation. Numer Algorithms 56, 129–142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mohebbi, A., Dehghan, M.: High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods. Math. Comput. Modell. 51, 537–549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moghaderi, H., Dehghan, M.: A multigrid compact finite differencemethod for solving the one-dimensional nonlinear sine-Gordon equation. Math. Methods Appl. Sci. 38, 3901–3922 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mohebbi, A., Dehghan, M.: High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods. Math. Comput. Modell. 51, 537–549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mittal, R.C., Bhatia, R.: Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method. Appl. Math. Comput. 220, 496–506 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Rashidinia, J., Ghasemia, M., Jalilian, R.: Numerical solution of the nonlinear Klein–Gordon equation. J. Comput. Appl. Math. 233, 1866–1878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sharifi, S., Rashidinia, J.: Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method. Appl. Math. Comput. 281, 28–38 (2016)

    MathSciNet  Google Scholar 

  22. Liu, W., Wu, B., Sun, J.: Space–time spectral collocation method for the one-dimensional sine-Gordon equation. Numer. Methods Partial Differ. Equ. 31, 670–690 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shao, W., Wu, X.: The numerical solution of the nonlinear Klein–Gordon and Sine–Gordon equations using the Chebyshev tau meshless method. Comput. Phys. Commun. 185, 1399–1409 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khuri, S.A., Sayfy, A.: A spline collocation approach for the numerical solution of a generalized nonlinear Klein–Gordon equation. Appl. Math. Comput. 216, 1047–1056 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Dawson, S.P., Chen, S., Doolen, G.D.: Lattice Boltzmann computations for reaction–diffusion equations. J. Chem. Phys. 2, 1514–1523 (1993)

    Article  Google Scholar 

  26. Yan, G.: A lattice Boltzmann equation for waves. J. Comput. Phys. 161, 61–69 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, J., Yan, G.: A lattice Boltzmann model for the Korteweg–de Vries equation with two conservation laws. Comput. Phys. Commun. 180, 1054–1062 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Duan, Y., Liu, R.: Lattice Boltzmann model for two-dimensional unsteady Burgers’ equation. J. Comput. Appl. Math. 206, 432–439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shi, B., Guo, Z.: Lattice Boltzmann model for nonlinear convection–diffusion equations. Phy. Rev. E 79, 016701 (2009)

    Article  Google Scholar 

  30. Lai, H., Ma, C.: Lattice Boltzmann modei for generalized nonlinear wave equation. Phys. Rev. E 84, 046708 (2011)

    Article  Google Scholar 

  31. Duan, Y., Kong, L.: A lattice Boitzmann model for the generalized Burgers–Hulexly equation. Phys. A 391, 625–632 (2012)

    Article  Google Scholar 

  32. Duan, Y., Chen, X., Kong, L.: Lattice Boltzmann model for the compound Burgers–Korteweg–de Vries equation. Chin. J. Comput. Phys. 32(6), 639–648 (2015)

    Google Scholar 

  33. Higuera, F., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Euro. Phys. Lett. 9, 345–349 (1989)

    Article  Google Scholar 

  34. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222(3), 145–197 (1992)

    Article  Google Scholar 

  35. Qian, Y., Succi, S., Orszag, S.: Recent advances in lattice Boltzmann computing. Annu. Rev. Comput. Phys. 3, 195–242 (1995)

    Article  MathSciNet  Google Scholar 

  36. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  37. Luo. L.: The lattice-gas and lattice Boltzmann methods: past, present and future. In: Proceedings of International Conference on Applied Computational Fluid Dynamics. October, China, Beijing, pp. 52-83 (2000)

  38. Bhatnagar, P., Gross, E., Krook, M.: A model for collision process in gas. I: small amplitude processed in charged and neutral one component system. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  39. Dehghan, M., Shokri, A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Partial Differ. Equ. 24, 1080–1093 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jang, T.S.: A new solution procedure for the nonlinear telegraph equation. Commun. Nonlinear Sci. Numer. Simul. 29, 307–326 (2015)

    Article  MathSciNet  Google Scholar 

  41. He, B., Meng, Q., Long, Y., Rui, W.: New exact solutions of the double sine-Gordon equation using symbolic computations. Appl. Math. Comput. 186, 1334–1346 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Wazwaz, A.-M.: The tanh method and a variable separated ODE method for solving double sine-Gordon equation. Phys. Lett. A 350, 367–370 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the reviewers for their valuable suggestions to improve the quality of the paper. This work is supported by National Natural Science Foundation of China (Nos. 11101399, 11271171, 11301234), and the Provincial Natural Science Foundation of Jiangxi (Nos. 20161ACB20006, 20142BCB23009, 20151BAB201012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Kong, L. & Guo, M. Numerical Simulation of a Class of Nonlinear Wave Equations by Lattice Boltzmann Method. Commun. Math. Stat. 5, 13–35 (2017). https://doi.org/10.1007/s40304-016-0098-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-016-0098-x

Keywords

Mathematics Subject Classification

Navigation