## Abstract

In this paper, we consider the convergence of the generalized Kähler-Ricci flow with semi-positive twisted form \(\theta \) on Kähler manifold \(M\). We give detailed proofs of the uniform Sobolev inequality and some uniform estimates for the metric potential and the generalized Ricci potential along the flow. Then assuming that there exists a generalized Kähler-Einstein metric, if the twisting form \(\theta \) is strictly positive at a point or \(M\) admits no nontrivial Hamiltonian holomorphic vector field, we prove that the generalized Kähler-Ricci flow must converge in \(C^\infty \) topology to a generalized Kähler-Einstein metric exponentially fast, where we get the exponential decay without using the Futaki invariant.

### Similar content being viewed by others

## References

Aubin, T.: Équation du type Monge-Ampère sur les variétés Kählerienes compactes. C. R. Acad. Sci. Paris Sér. A-B

**283**, A119–A121 (1976)Bando, S., Mabuchi, T.: Uniqueness of Einstein-Kähler metrics modulo connected group actions, algebraic geometry. Adv. Studies Pure math. 10 (1987)

Cao, H.D.: Deformation of K\(\ddot{a}\)hler metrics to K\(\ddot{a}\)hler-Einstein metrics on compact K\(\ddot{a}\)hler manifolds. Invent. Math.

**81**(2), 359–372 (1985)Cao, H.D., Chen, B.L., Zhu, X.P.: Ricci flow on compact Kähler manifolds of positive bisectional curvature. Comptes Rendus Mathematique

**337**, 781–784 (2003)Chen, X.X., Tian, G.: Ricci flow on Kähler-Einstein surfaces. Invent. Math.

**147**(3), 487–544 (2002)Chen, X.X., Tian, G.: Geometric of Kähler metrics and foliations of holomorphic disks. Publications mathématiques

**107**(1), 1–107 (2008)Chen, X.X., Tian, G.: Ricci flow on Kähler-Einstein manifolds. Duke Math. J.

**131**(1), 17–73 (2006)Collins, T., Sz\(\acute{e}\)kelyhidi, G.: The twisted Kähler-Ricci flow, arXiv:1207.5441v1

Davies, E.B.: Heat Kernel and Spectral Theory. Cambridge University Press, Sao Paulo (1989)

Ding, W.Y., Tian, G.: Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math.

**110**(2), 315–335 (1992)Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, 13–33, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence (1999)

Donaldson, S.K.: Stability, birational transformations and the Kähler-Einstein problem. arXiv:1007.4220. To appear in surveys in differntial geometry, Vol XVII, International Press (2012)

Li, H.Z.: On the lower bound of the K-energy and the F functional. Osaka J. Math

**45**(1), 253–264 (2008)Liu, J.W.: The generalized Kähler Ricci flow. J. Math. Anal. Appl

**408**, 751C761 (2013)Perelman, G.: The entropy formula for the Ricci flow and its geometricapplications, arXiv:math.DG/0211159

Phong, D., Sesum, N., Sturm, J.: Multiplier ideal sheaves and the Kähler-Ricci flow. Comm. Anal. Geom.

**15**(3), 613–632 (2007)Phong, D., Song, J., Sturm, J., Weinkove, B.: The K\(\ddot{a}\)hler-Ricci flow and the \(\bar{\partial }\) operator on vector fields. J. DIffer. Geom.

**81**(3), 631–647 (2009)Phong, D., Sturm, J.: On stability and the convergence of the K\(\ddot{a}\)hler-Ricci flow. J. Differ. Geom.

**72**(1), 149–168 (2006)Phong, D., Sturm, J.: Lectures on stability and constant scalar curvature. Curr. Dev. Math.

**2009**, 101–176 (2007)Rubinstein, Y.: On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Kähler-Ricci flow. Trans. Amer. Math. Soc.

**361**, 5839–5850 (2009)Stoppa, J.: Twisted constant scalar curvature K ahler metrics and K ahler slope stability. J. Diff. Geom.

**83**, 663–691 (2009)Song, J., Tian, G.: Canonical measures and K\(\ddot{a}\)hler-Ricci flow. J. Amer. Math. Soc.

**25**, 303–353 (2012)Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math.

**137**, 1–37 (1997)Tian, G., Zhu, X.H.: Convergence of K\(\ddot{a}\)hler-Ricci flow. J. Amer. Math. Soc.

**20**(3), 675–699 (2007)Tian, G., Zhu, X.H.: Convergence of the K ahler-Ricci flow on Fano manifolds, II, preprint, arXiv:1102.4798

Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation I. Comm. Pure Appl. Math.

**31**, 339–411 (1978)Ye, R.G.: The logarithmic Sobolev inequality along the Ricci flow, preprint, arXiv:0707.2424

Zhang, Q.S.: A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not.

**2007**, rnm056 (2007)Zhang, X., Zhang, X.W.: Generalized K\(\ddot{a}\)hler-Einstein metrics and Energy functionals, preprint (2010), to appear in Canadian Journal of Mathematical. Can. J. Math. doi:10.4153/CJM-2013-034-3

## Acknowledgments

Both authors would like to thank professor X. Zhang for his useful discussion. We are also grateful to the referee for his or her careful reading and valuable suggestions. In particular, the referee points out that the exponential decay can be deduced on the basis of our arguments. The work was supported in part by NSF in China, No.11131007, the Hundred Talents Program of CAS and Zhejiang Provincial Natural Science Foundation of China, No.LY12A01028.

## Author information

### Authors and Affiliations

### Corresponding author

## Rights and permissions

## About this article

### Cite this article

Liu, J., Wang, Y. Convergence of the Generalized Kähler-Ricci Flow.
*Commun. Math. Stat.* **3**, 239–261 (2015). https://doi.org/10.1007/s40304-015-0058-x

Received:

Revised:

Accepted:

Published:

Issue Date:

DOI: https://doi.org/10.1007/s40304-015-0058-x

### Keywords

- Complex Monge-Ampère equation
- Generalized Kähler-Einstein metric
- Sobolev inequality
- Moser-Trudinger type inequality