Skip to main content
Log in

Convergence of the Generalized Kähler-Ricci Flow

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In this paper, we consider the convergence of the generalized Kähler-Ricci flow with semi-positive twisted form \(\theta \) on Kähler manifold \(M\). We give detailed proofs of the uniform Sobolev inequality and some uniform estimates for the metric potential and the generalized Ricci potential along the flow. Then assuming that there exists a generalized Kähler-Einstein metric, if the twisting form \(\theta \) is strictly positive at a point or \(M\) admits no nontrivial Hamiltonian holomorphic vector field, we prove that the generalized Kähler-Ricci flow must converge in \(C^\infty \) topology to a generalized Kähler-Einstein metric exponentially fast, where we get the exponential decay without using the Futaki invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Équation du type Monge-Ampère sur les variétés Kählerienes compactes. C. R. Acad. Sci. Paris Sér. A-B 283, A119–A121 (1976)

    MathSciNet  Google Scholar 

  2. Bando, S., Mabuchi, T.: Uniqueness of Einstein-Kähler metrics modulo connected group actions, algebraic geometry. Adv. Studies Pure math. 10 (1987)

  3. Cao, H.D.: Deformation of K\(\ddot{a}\)hler metrics to K\(\ddot{a}\)hler-Einstein metrics on compact K\(\ddot{a}\)hler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cao, H.D., Chen, B.L., Zhu, X.P.: Ricci flow on compact Kähler manifolds of positive bisectional curvature. Comptes Rendus Mathematique 337, 781–784 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, X.X., Tian, G.: Ricci flow on Kähler-Einstein surfaces. Invent. Math. 147(3), 487–544 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, X.X., Tian, G.: Geometric of Kähler metrics and foliations of holomorphic disks. Publications mathématiques 107(1), 1–107 (2008)

    Article  MATH  Google Scholar 

  7. Chen, X.X., Tian, G.: Ricci flow on Kähler-Einstein manifolds. Duke Math. J. 131(1), 17–73 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Collins, T., Sz\(\acute{e}\)kelyhidi, G.: The twisted Kähler-Ricci flow, arXiv:1207.5441v1

  9. Davies, E.B.: Heat Kernel and Spectral Theory. Cambridge University Press, Sao Paulo (1989)

    Book  Google Scholar 

  10. Ding, W.Y., Tian, G.: Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110(2), 315–335 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, 13–33, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence (1999)

  12. Donaldson, S.K.: Stability, birational transformations and the Kähler-Einstein problem. arXiv:1007.4220. To appear in surveys in differntial geometry, Vol XVII, International Press (2012)

  13. Li, H.Z.: On the lower bound of the K-energy and the F functional. Osaka J. Math 45(1), 253–264 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Liu, J.W.: The generalized Kähler Ricci flow. J. Math. Anal. Appl 408, 751C761 (2013)

    Google Scholar 

  15. Perelman, G.: The entropy formula for the Ricci flow and its geometricapplications, arXiv:math.DG/0211159

  16. Phong, D., Sesum, N., Sturm, J.: Multiplier ideal sheaves and the Kähler-Ricci flow. Comm. Anal. Geom. 15(3), 613–632 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Phong, D., Song, J., Sturm, J., Weinkove, B.: The K\(\ddot{a}\)hler-Ricci flow and the \(\bar{\partial }\) operator on vector fields. J. DIffer. Geom. 81(3), 631–647 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Phong, D., Sturm, J.: On stability and the convergence of the K\(\ddot{a}\)hler-Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Phong, D., Sturm, J.: Lectures on stability and constant scalar curvature. Curr. Dev. Math. 2009, 101–176 (2007)

    Article  Google Scholar 

  20. Rubinstein, Y.: On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Kähler-Ricci flow. Trans. Amer. Math. Soc. 361, 5839–5850 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stoppa, J.: Twisted constant scalar curvature K ahler metrics and K ahler slope stability. J. Diff. Geom. 83, 663–691 (2009)

    MATH  MathSciNet  Google Scholar 

  22. Song, J., Tian, G.: Canonical measures and K\(\ddot{a}\)hler-Ricci flow. J. Amer. Math. Soc. 25, 303–353 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 137, 1–37 (1997)

    Article  Google Scholar 

  24. Tian, G., Zhu, X.H.: Convergence of K\(\ddot{a}\)hler-Ricci flow. J. Amer. Math. Soc. 20(3), 675–699 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tian, G., Zhu, X.H.: Convergence of the K ahler-Ricci flow on Fano manifolds, II, preprint, arXiv:1102.4798

  26. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation I. Comm. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ye, R.G.: The logarithmic Sobolev inequality along the Ricci flow, preprint, arXiv:0707.2424

  28. Zhang, Q.S.: A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not. 2007, rnm056 (2007)

    Google Scholar 

  29. Zhang, X., Zhang, X.W.: Generalized K\(\ddot{a}\)hler-Einstein metrics and Energy functionals, preprint (2010), to appear in Canadian Journal of Mathematical. Can. J. Math. doi:10.4153/CJM-2013-034-3

Download references

Acknowledgments

Both authors would like to thank professor X. Zhang for his useful discussion. We are also grateful to the referee for his or her careful reading and valuable suggestions. In particular, the referee points out that the exponential decay can be deduced on the basis of our arguments. The work was supported in part by NSF in China, No.11131007, the Hundred Talents Program of CAS and Zhejiang Provincial Natural Science Foundation of China, No.LY12A01028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, Y. Convergence of the Generalized Kähler-Ricci Flow. Commun. Math. Stat. 3, 239–261 (2015). https://doi.org/10.1007/s40304-015-0058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-015-0058-x

Keywords

Mathematics Subject Classification

Navigation