Brq: an R package for Bayesian quantile regression

Abstract

Bayesian regression quantile has received much attention in recent literature. The objective of this paper is to illustrate Brq, a new software package in R. Brq allows for the Bayesian coefficient estimation and variable selection in regression quantile (RQ) and support Tobit and binary RQ. In addition, this package implements the Bayesian Tobit and binary RQ with lasso and adaptive lasso penalties. Further modeling functions for summarising the results, drawing trace plots, posterior histograms, autocorrelation plots, and plotting quantiles are included.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Algamal, Z.Y., Alhamzawi, R., Ali, H.T.M.: Gene selection for microarray gene expression classification using bayesian lasso quantile regression. Comput. Biol. Med. 97, 145–152 (2018)

    Article  Google Scholar 

  2. 2.

    Alhamzawi, R., Ali, H.T.M.: Bayesian tobit quantile regression with penalty. Commun. Stat. Simul. Comput. 47(6), 1739–1750 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Alhamzawi, R., Yu, K.: Bayesian tobit quantile regression using g-prior distribution with ridge parameter. J. Stat. Comput. Simul. 85(14), 2903–2918 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Alhamzawi, R., Yu, K., Benoit, D.F.: Bayesian adaptive lasso quantile regression. Stat. Model. 12(3), 279–297 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Alhamzawi, R., Yu, K., Vinciotti, V., Tucker, A.: Prior elicitation for mixed quantile regression with an allometric model. Environmetrics 22(7), 911–920 (2011)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Alhamzawi, R.J.T.: Prior elicitation and variable selection for bayesian quantile regression. Ph. D. thesis, Brunel University, School of Information Systems, Computing and Mathematics (2013)

  7. 7.

    Benoit, D.F., Van den Poel, D.: Binary quantile regression: a Bayesian approach based on the asymmetric laplace distribution. J. Appl. Econ. 27(7), 1174–1188 (2012)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Brownlee, K.A.: Statistical Theory and Methodology in Science and Engineering, vol. 150. Wiley, New York (1965)

    Google Scholar 

  9. 9.

    Davino, C., Furno, M., Vistocco, D.: Quantile Regression: Theory and Applications. Wiley, Amsterdam (2013)

  10. 10.

    Farcomeni, A.: Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat. Comput. 22(1), 141–152 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Geraci, M., et al.: Linear quantile mixed models: the lqmm package for laplace quantile regression. J. Stat. Softw. 57(13), 1–29 (2014)

    Article  Google Scholar 

  12. 12.

    Geraci, M., Bottai, M.: Quantile regression for longitudinal data using the asymmetric laplace distribution. Biostatistics 8(1), 140–154 (2006)

    MATH  Article  Google Scholar 

  13. 13.

    Hao, L., Naiman, D.Q.: Quantile regression. quantitative applications in the social sciences(2007)

  14. 14.

    Hashem, H., Vinciotti, V., Alhamzawi, R., Yu, K.: Quantile regression with group lasso for classification. Adv. Data Anal. Classif. 10(3), 375–390 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Isaacs, D., Altman, D., Tidmarsh, C., Valman, H., Webster, A.: Serum immunoglobulin concentrations in preschool children measured by laser nephelometry: reference ranges for igg, iga, igm. J. Clin. Pathol. 36(10), 1193–1196 (1983)

    Article  Google Scholar 

  16. 16.

    Koenker, R., Bassett, v.: Regression quantiles. Econometr. J. Econ. Soc. 33–50 (1978)

  17. 17.

    Koenker, R., Hallock, K.F.: Quantile regression. J. Econ. Perspect. 15(4), 143–156 (2001)

    Article  Google Scholar 

  18. 18.

    Koenker, R., Machado, J.A.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94(448), 1296–1310 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Koenker, R.W., D’Orey, V.: Algorithm as 229: computing regression quantiles. J. R. Stat. Soc.: Ser. C (Appl. Stat.) 36(3), 383–393 (1987)

    Google Scholar 

  20. 20.

    Kozumi, H., Kobayashi, G.: Gibbs sampling methods for bayesian quantile regression. J. Stat. Comput. Simul. 81(11), 1565–1578 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Li, Q., Xi, R., Lin, N., et al.: Bayesian regularized quantile regression. Bayesian Anal. 5(3), 533–556 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Manski, C.F.: Maximum score estimation of the stochastic utility model of choice. J. Econ. 3(3), 205–228 (1975)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Manski, C.F.: Asymptotic properties of the maximum score estimator. J. Econ. 27, 313–333 (1985)

    MATH  Article  Google Scholar 

  24. 24.

    Marino, M.F., Alfó, M.: Latent drop-out based transitions in linear quantile hidden markov models for longitudinal responses with attrition. Adv. Data Anal. Classif. 9(4), 483–502 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Marino, M.F., Tzavidis, N., Alfò, M.: Mixed hidden markov quantile regression models for longitudinal data with possibly incomplete sequences. Stat. Methods Med. Res. 27(7), 2231–2246 (2018)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Neelon, B., Li, F., Burgette, L.F., Benjamin Neelon, S.E.: A spatiotemporal quantile regression model for emergency department expenditures. Stat. Med. 34(17), 2559–2575 (2015)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Manski, C.F.: Asymptotic properties of the maximum score estimator. J. Econ. 27, 313–333 (1985)

    MATH  Article  Google Scholar 

  28. 28.

    Manski, C.F.: Asymptotic properties of the maximum score estimator. J. Econ. 27, 313–333 (1985)

    MATH  Article  Google Scholar 

  29. 29.

    Portnoy, S., Lin, G.: Asymptotics for censored regression quantiles. J. Nonparametr. Stat. 22(1), 115–130 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Powell, J.L.: Censored regression quantiles. J. Econometr. 32(1), 143–155 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Reed, C., Yu, K.: A partially collapsed gibbs sampler for bayesian quantile regression. Technical report, Department of Mathematical Sciences, Brunel University (2009)

  32. 32.

    Stamey, T. A., Kabalin, J. N., McNeal, J. E., Johnstone, I. M., Freiha, F., Redwine, E. A., Yang, N.: Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. J. Urol. 141(5), 1076–1083 (1989)

  33. 33.

    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 267–288 (1996)

  34. 34.

    Yu, K., Dang, W., Zhu, H., Al Hamzawi, R.: Comment on article by Spokoiny, Wang and Härdle. J. Stat. Plan. Inference 7(143), 1140–1144 (2013)

    MATH  Article  Google Scholar 

  35. 35.

    Yu, K., Lu, Z., Stander, J.: Quantile regression: applications and current research areas. J. R. Stat. Soc. Ser. D (Stat.) 52(3), 331–350 (2003)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Yu, K., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54(4), 437–447 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Yu, K., Stander, J.: Bayesian analysis of a tobit quantile regression model. J. Econometr. 137(1), 260–276 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Yue, Y.R., Rue, H.: Bayesian inference for additive mixed quantile regression models. Comput. Stat. Data Anal. 55(1), 84–96 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rahim Alhamzawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alhamzawi, R., Ali, H.T.M. Brq: an R package for Bayesian quantile regression. METRON 78, 313–328 (2020). https://doi.org/10.1007/s40300-020-00190-6

Download citation

Keywords

  • Bayesian quantile
  • Lasso
  • Adaptive lasso
  • Prior elicitation
  • Tobit