Skip to main content

Alternative and complementary approaches to spatially balanced samples


The spatial distribution of a population represents an important tool in sampling designs that use the geographical coordinates of the units in the frame as auxiliary information. These data may represent a source of auxiliaries that can be helpful to design effective sampling strategies, which, assuming that the observed phenomenon is related with the spatial features of the population, could gather a considerable gain in their efficiency by a proper use of this particular information. We present and compare various methods to select spatially balanced samples. These selection algorithms are compared with the intuitive principle of partitioning the space into n strata and selecting only one unit per stratum. The fundamental interest is not only to evaluate the effectiveness of such different approaches, but also to understand if it is possible to combine them to obtain more efficient sampling designs. The performances of the spatially balanced designs are compared in terms of their root mean squared error using the simple random sampling without replacement as benchmark. An important result is that these complex designs provide better results than the simple principle of stratifying the study area. It also does not help so much to improve efficiencies even if it is combined with balancing on known totals of some auxiliary variables, such as the geographic coordinates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Arbia, G.: The use of GIS in spatial statistical surveys. International Statistical Review 61(2), 339–359 (1993)

    Article  Google Scholar 

  2. Barabesi, L., Franceschi, S.: Sampling properties of spatial total estimators under tessellation stratified designs. Environmetrics 22, 271–278 (2011)

    Article  MathSciNet  Google Scholar 

  3. Benedetti, R., Espa, G., Taufer, E.: Model-based variance estimation in non-measurable spatial designs. J. Stat. Plan. Inference 181, 52–61 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedetti, R., Bee, M., Espa, G., Piersimoni, F. (eds.): Agricultural Survey Methods. Wiley, Chicester (2010)

    Google Scholar 

  5. Benedetti, R., Palma, D.: Optimal sampling designs for dependent spatial units. Environmetrics 6, 101–114 (1995)

    Article  Google Scholar 

  6. Benedetti, R., Piersimoni, F.: A spatially balanced design with probability function proportional to the within sample distance. Biom. J. (2017). doi:10.1111/insr.12216

  7. Benedetti, R., Piersimoni, F., Postiglione, P.: Sampling spatial units for agricultural surveys. Advances in Spatial Science Series. Springer, Berlin (2015)

    Google Scholar 

  8. Benedetti, R., Piersimoni, F., Postiglione, P.: Spatially balanced sampling: a review and a reappraisal. Int. Stat. Rev. (2017). doi:10.1111/insr.12216

  9. Bivand, R., Piras, G.: Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015)

    Google Scholar 

  10. Breidt, F.J., Chauvet, G.: Penalized balanced sampling. Biometrika 99, 945–958 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chauvet, G., Tillè, Y.: A fast algorithm of balanced sampling. Comput. Stat. 21, 53–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deville, J.C., Tillè, Y.: Unequal probability sampling without replacement through a splitting method. Biometrika 85, 89–101 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deville, J.C., Tillè, Y.: Efficient balanced sampling: the cube method. Biometrika 91, 893–912 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dickson, M.M., Benedetti, R., Giuliani, D., Espa, G.: The use of spatial sampling designs in business surveys. Open J. Stat. 4, 345–354 (2014)

    Article  Google Scholar 

  15. Dickson, M.M., Tillè, Y.: Ordered spatial sampling by means of the traveling salesman problem. Comput. Stat. 31, 1359–1372 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elliott, M.R.: A simple method to generate equal-sized homogenous strata or clusters for population-based sampling. Ann. Epidemiol. 21(4), 290–296 (2011)

    Article  Google Scholar 

  17. Fattorini, L., Corona, P., Chirici, G., Pagliarella, M.C.: Design-based strategies for sampling spatial units from regular grids with applications to forest surveys, land use, and land cover estimation. Environmetrics 26, 216–228 (2015)

    Article  MathSciNet  Google Scholar 

  18. Grafström, A.: Spatially correlated Poisson sampling. J. Stat. Plan. Inference 142, 139–147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grafström, A., Lisic, J.: BalancedSampling: balanced and spatially balanced sampling. R package version 1.5.2. (2016). Accessed 10 Mar 2017

  20. Grafström, A., Lundström, N.L.P., Schelin, L.: Spatially balanced sampling through the pivotal method. Biometrics 68, 514–520 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grafström, A., Tillè, Y.: Doubly balanced spatial sampling with spreading and restitution of auxiliary totals. Environmetrics 24, 120–131 (2013)

    Article  MathSciNet  Google Scholar 

  22. Hahsler, M., Hornik, K.: TSP Infrastructure for the Traveling Salesperson Problem. R package version 1.1-4. (2017). Accessed 10 Mar 2017

  23. Hedayat, A., Rao, C.R., Stufken, J.: Sampling designs excluding contiguous units. J. Stat. Plan. Inference 19, 159–170 (1988)

    Article  MATH  Google Scholar 

  24. Kincaid, T.M., Olsen, A.R.: spsurvey: spatial survey design and analysis. R package version 3.3 (2016)

  25. Lohr, S., Rao, J.N.K.: Inference in dual frame surveys. J. Am. Stat. Assoc. 95(449), 271–280 (2000)

    Article  MATH  Google Scholar 

  26. Müller, W.G.: Collecting spatial data: optimum design of experiments for random fields, 3rd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  27. R Core Team.: R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. (2016). Accessed 10 Mar 2017

  28. Ranalli, M.G., Arcos, A., Rueda, M., Teodoro, A.: Calibration estimation in dual-frame surveys. Stat. Methods Appl. 25(3), 321–349 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stevens Jr., D.L., Olsen, A.R.: Variance estimation for spatially balanced samples of environmental resources. Environmetrics 14, 593–610 (2003)

    Article  Google Scholar 

  30. Stevens Jr., D.L., Olsen, A.R.: Spatially balanced sampling of natural resources. J. Am. Stat. Assoc. 99, 262–278 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tobler, W.R.: A computer movie simulating urban growth in Detroit region. Econ. Geogr. (Supplement) 46, 234–240 (1970)

    Article  Google Scholar 

  32. Tillè, Y., Matei, A.: sampling: survey sampling. R package version 2.7. (2015)

  33. Waagepetersen, R.: An estimating function approach to inference for inhomogeneous Neyman–Scott processes. Biometrics 63, 252–258 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Walvoort, D.J.J., Brus, D.J., de Gruijter, J.J.: An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means. Comput. Geosci. 36, 1261–1267 (2010)

    Article  Google Scholar 

  35. Wesley.: Spatial Clustering with Equal Sizes. (2013). Accessed 1 May 2017

  36. Wright, K.: agridat: agricultural datasets. R package version 1.12. (2015)

Download references


The authors would like to thank an anonymous referee and the editors of this issue for their valuable comments which helped to improve the quality of the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Benedetti.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, R., Piersimoni, F. & Postiglione, P. Alternative and complementary approaches to spatially balanced samples. METRON 75, 249–264 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification