Modelling escalation in crime seriousness: a latent variable approach

Abstract

This paper investigates the use of latent variable models in assessing escalation in crime seriousness. It has two aims. The first is to contrast a mixed-effects approach to modelling crime escalation with a latent variable approach. The paper therefore examines whether there are specific subgroups of offenders with distinct seriousness trajectory shapes. The second is methodological—to compare mixed-effects modelling used in previous work on escalation with group-based trajectory modelling and growth mixture modelling (mixture of mixed-effects models). The availability of software is an issue, and comparisons of fit across software packages is not straightforward. We suggest that mixture models are necessary in modelling crime seriousness, that growth mixture models rather than group-based trajectory models provide the best fit to the data, and that R gives the best software environment for comparing models. Substantively, we identify three latent groups, with the largest group showing crime seriousness increases with criminal justice experience (measured through number of conviction occasions) and decreases with increasing age. The other two groups show more dramatic non-linear effects with age, and non-significant effects of criminal justice experience. Policy considerations of these results are briefly discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    For identifiability,the lcmm package in R estimates the variance–covariance matrix of the last latent class, and then a set of estimated class-specific proportional parameters is used to multiply the variance–covariance matrix in order to compute the variances and covariances of each of the other classes.

  2. 2.

    Note that age is treated as piecewise linear through a one breakpoint representation as described in Sect. 6.1

  3. 3.

    The posterior probability is the probability of each individual belongs to certain class k given data \({\varvec{X}}\), \(P(c_{i}=k\mid {\varvec{X}}_{it})\).

References

  1. 1.

    Aitkin, M.: A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55, 117–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. 2.

    Bartolucci, F., Farcomeni, A., Pennoni, F.: Latent Markov Modsls for Longitudinal Data. CRC Press, Boca Raton (2013)

    Google Scholar 

  3. 3.

    Bartolucci, F., Pennoni, F., Francis, B.: A latent Markov model for detecting pattern of criminal activity. J. R. Stat. Soc. Ser. A 170, 115–132 (2007)

    Article  MathSciNet  Google Scholar 

  4. 4.

    Blumstein, A., Cohen, J., Roth, J., Visher, C.A. (eds.): Criminal Careers and “Career Criminals”, vol. 1. National Academy Press, Washington, D.C. (1986)

    Google Scholar 

  5. 5.

    Bushway, S.D., Sweeten, G., Nieuwbeerta, P.: Measuring long term individual trajectories of offending using multiple methods. J. Quant. Criminol. 25, 259–286 (2009)

    Article  Google Scholar 

  6. 6.

    Collins, L., Lanza, S.: Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences. Wiley, New York (2009)

    Google Scholar 

  7. 7.

    Diggle, P., Heagerty, P., Liang, K.-Y., Zeger, S.: Analysis of Longitudinal Data, 2nd edn. Oxford University Press, Oxford (2002)

  8. 8.

    Eberly, E.L., Thacheray, M.L.: On Lange and Ryan’s plotting technique for diagnosing non-normality of random effects. Stat. Probab. Lett. 75, 77–85 (2005)

    Article  MATH  Google Scholar 

  9. 9.

    Fagan, A.A., Western, J.: Escalation and deceleration of offending behaviours from adolescence to early adulthood. Aust. N. Z. J. Criminol. 38, 59–76 (2005)

    Article  Google Scholar 

  10. 10.

    Fearn, T.: A two-stage model for growth curves which leads to rao’s covariance-adjusted estimates. Biometrika 64, 141–143 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. 11.

    Francis, B., Liu, J., Soothill, K.: Criminal lifestyle specialization: female offending in England and Wales. Int. Criminal Justice Rev. 20, 188–204 (2010)

    Article  Google Scholar 

  12. 12.

    Francis, B., Soothill, K., Humphreys, L., Bezzina, A.: Developing measures of severity and frequency of reconviction (2005). http://www.maths.lancs.ac.uk/~francisb/seriousnessreport.pdf

  13. 13.

    Holgersson, H.: A graphical method for assessing multivariate normality. Comput. Stat. 21, 141–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. 14.

    Hwang, H., Takane, Y.: Estimation of growth curve models with structured error covariances by generalized estimating equations. Behaviormetrika 32, 155–163 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. 15.

    Jacqmin-Gadda, H., Sibillot, S., Proust, C., Molina, J., Thiébaut, R.: Robustness of the linear mixed model to misspecified error distribution. Comput. Stat. Data Anal. 51, 5142–5154 (2007)

    Article  MATH  Google Scholar 

  16. 16.

    Jones, B., Nagin, D., Roeder, K.: A sas procedure based on mixture models for estimating develpmental trajectories. Soc. Methods Res. 29, 374–393 (2001)

    Article  MathSciNet  Google Scholar 

  17. 17.

    Kreuter, F., Muthèn, B.: Analyzing criminal trajectory profiles: bridging multilevel and group-based approaches using growth mixture modeling. J. Quant. Criminol. 24, 1–31 (2008)

    Article  Google Scholar 

  18. 18.

    Laird, N.: Non-parametric maximum likelihood estimation of a mixing distribution. J. Am. Stat. Assoc. 73, 805–811 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. 19.

    Laird, N., Ware, J.: Random-effects models for longitudinal data. Biometrics 38, 963–974 (1982)

    Article  MATH  Google Scholar 

  20. 20.

    Lange, N., Ryan, L.: Assessing normality in random effects models. Ann. Stat. 17, 624–642 (1989)

  21. 21.

    Liu, J., Francis, B., Soothill, K.: A longitudinal study of escalation in crime seriousness. J. Quant. Criminol. 27, 175–196 (2011)

    Article  Google Scholar 

  22. 22.

    Lukacs, E.: A characterization of the normal distribution. Ann. Math. Stat. 13, 91–93 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  23. 23.

    Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2, 49–55 (1936)

    MATH  Google Scholar 

  24. 24.

    Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  25. 25.

    McLachlan, G., Peel, D.: Finite Mixture Models. Wiley-Interscience, New York (2004)

    Google Scholar 

  26. 26.

    Muggeo, V.: Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003)

  27. 27.

    Muthèn, B., Asparouhov, T.: Growth Mixture Modeling: Analysis with Non-Gaussian Random Effects. In: Fitzmaurice, G., Davidian, M., Verbeke, G., Molenberghs, G. (eds.) Longitudinal data analysis, chapter 6, pp. 143–162. Chapman and Hall, New York (2009)

    Google Scholar 

  28. 28.

    Muthèn, B., Shedden, K.: Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics 55, 463–469 (1999)

    Article  MATH  Google Scholar 

  29. 29.

    Nagin, D.: Analyzing developmental trajectories: a semiparametric, group-based approach. Psychol. Methods 4, 139–157 (1999)

    Article  Google Scholar 

  30. 30.

    Nagin, D.: Group-Based Modeling of Development. Harvard Univ. Press, Cambridge (2005)

    Google Scholar 

  31. 31.

    Nagin, D., Land, K.C.: Age, criminal careers, and population heterogeneity: specification and estimation of a nonparametric, mixed poisson model. Criminology 31, 327–362 (1993)

    Article  Google Scholar 

  32. 32.

    Nagin, D., Tremblay, R.E.: Developmental trajectory groups: fact or a useful statistical fiction? Criminology 43, 873–904 (2005)

    Article  Google Scholar 

  33. 33.

    Pennoni, F.: Latent Markov Modsls for Longitudinal Data. Scholars’ Press, Saarbrücken (2014)

    Google Scholar 

  34. 34.

    Pinheiro, J., Bates, D.: Mixed Effects Models in S and S-PLUS. Springer, New York (2000)

    Google Scholar 

  35. 35.

    Piquero, R., Brame, R., Fagan, J., Moffitt, E.: Assessing the offending activity of criminal domestic violence suspects: offense specialization, escalation, and de-escalation evidence from the spouse assault replication program. Public Health Rep. 121, 409–418 (2006)

    Google Scholar 

  36. 36.

    Proust, C., Jacqmin-Gadda, H.: Estimation of linear mixed models with a mixture of distribution for the random-effects. Comput. Methods Programs Biomed. 78, 165–173 (2005)

    Article  Google Scholar 

  37. 37.

    Proust-Lima, C., Liquet, B.: The lcmm package version 1.4 (2011). http://cran.r-project.org/web/packages/lcmm/lcmm.pdf

  38. 38.

    Rao, C.R.: The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. Biometrika 52, 447–458 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  39. 39.

    Raudenbush, S.: How do we study “what happens next”? Ann. Am. Acad. Polit. Soc. Sci. 602, 131–144 (2005)

    Article  Google Scholar 

  40. 40.

    Sampson, R.J., Laub, J.H.: Seductions of methods: rejoinder to Nagin and Tremblay’s “developmental trajectory groups: fact or fiction?”. Criminology 43, 905–913 (2005)

    Article  Google Scholar 

  41. 41.

    Skarðhamar, T.: Distinguishing facts and artifacts in group-based modeling. Criminology 48, 295–320 (2010)

    Article  Google Scholar 

  42. 42.

    Soothill, K., Francis, B., Liu, J.: Does serious offending lead to homicide? Exploring the interrelationships and sequencing of serious crime. Br. J. Criminol. 48, 522–537 (2008)

    Article  Google Scholar 

  43. 43.

    Titterington, D., Smith, A., Makov, U.E.: Statistical Analysis of Finite Mixture Models. Wiley, New York (1985)

    Google Scholar 

  44. 44.

    Verbeke, G., Lesaffre, E.: A linear mixed-effects model with heterogeneity in the random-effects population. Am. Stat. Assoc. 91, 217–221 (1996)

    Article  MATH  Google Scholar 

  45. 45.

    Verbeke, G., Molenberghs, G.: Linear Mixed Models for Longitudinal Data. Springer, New York (2000)

    Google Scholar 

  46. 46.

    Verbyla, A.: Conditioning in the growth curve model. Biometrika 73, 475–483 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  47. 47.

    Verbyla, A., Venables, W.: An extension of the growth curve model. Biometrika 75, 129–138 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. 48.

    Vermunt, J., Magidson, J.: Latent Gold 4.0 User Manual. Statistical Innovations Inc., Belmont (2005)

Download references

Acknowledgments

This work was supported by the UK Economic and Social Research Council (ESRC) who funded this work under the AQMEN Phase 2 Initiative (Grant Number ES/K006460/1). This study was a re-analysis of existing data that are publicly available from the UK Data Service at http://dx.doi.org/10.5255/UKDA-SN-3935-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brian Francis.

Appendix

Appendix

See Table 5.

Table 5 List of terminologies in mixed-effects and mixture modelling, and the available software for the analysis of a continuous response variable

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Francis, B., Liu, J. Modelling escalation in crime seriousness: a latent variable approach. METRON 73, 277–297 (2015). https://doi.org/10.1007/s40300-015-0073-4

Download citation

Keywords

  • Escalation
  • Aggravation
  • Longitudinal data analysis
  • Latent variable methods
  • Heterogeneity
  • Group-based trajectory modelling
  • Growth mixture modelling
  • Criminal careers
  • Comparative study