Aitkin, M.: The calibration of p-values, posterior Bayes factors and the AIC from the posterior distribution of the likelihood (with discussion). Stat. Comput. 7, 253–272 (1997)
Article
Google Scholar
Aitkin, M.: Likelihood and Bayesian analysis of mixtures. Stat. Model. 1, 287–304 (2001)
Article
Google Scholar
Aitkin, M.: Statistical Inference: an Integrated Bayesian/Likelihood Approach. Chapman and Hall/CRC Press, Boca Raton (2010)
Book
Google Scholar
Aitkin, M.: How many components in a finite mixture? In: Mengersen, K.L., Robert, C.P., Titterington, D.M. (eds.) Mixtures Estimation and Applications. Wiley, Chichester (2011)
Google Scholar
Bartlett, M.S.: A comment on D. V. Lindley’s statistical paradox. Biometrika 44, 533–534 (1957)
Article
MathSciNet
MATH
Google Scholar
Berkhof, J., van Mechelen, I., Gelman, A.: A Bayesian approach to the selection and testing of mixture models. Stat. Sin. 13, 423–442 (2003)
MATH
Google Scholar
Celeux, G., Forbes, F., Robert, C.P., Titterington, D.M.: Deviance information criteria for missing data models. Bayesian Anal. 1, 651–674 (2006)
Article
MathSciNet
Google Scholar
Dempster, A.P.: The direct use of likelihood in significance testing. Stat. Comput. 7, 247–252 (1997)
Article
Google Scholar
Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90, 577–588 (1995)
Article
MathSciNet
MATH
Google Scholar
Garcia-Escudero, L.A., Gordaliza, A., Matran, C., Mayo-Iscar, A.: Avoiding spurious local maximizers in mixture modeling. Stat. Comput. 01/2015; 2015. doi:10.1007/s11222-014-9455-3
Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995)
Article
MATH
Google Scholar
Lindley, D.V.: A statistical paradox. Biometrika 44, 187–192 (1957)
Article
MathSciNet
MATH
Google Scholar
McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
Book
MATH
Google Scholar
Nylund, K.L., Asparouhov, T., Muthen, B.O.: Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Struct. Equ. Model. 14, 535–569 (2007)
Article
MathSciNet
Google Scholar
Phillips, D.B., Smith, A.F.M.: Bayesian model comparison via jump diffusions. In: Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.) Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC Press, Boca Raton (1996)
Google Scholar
Postman, M., Huchra, J.P., Geller, M.J.: Probes of large-scale structures in the Corona Borealis region. Astron. J. 92, 1238–1247 (1986)
Article
Google Scholar
Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Stat. Soc. B 59, 731–792 (1997)
Article
MathSciNet
MATH
Google Scholar
Roeder, K.: Density estimation with confidence sets exemplified by superclusters and voids in the galaxies. J. Am. Stat. Assoc. 85, 617–624 (1990)
Article
MATH
Google Scholar
Roeder, K., Wasserman, L.: Practical Bayesian density estimation using mixtures of normals. J. Am. Stat. Assoc. 92, 894–902 (1997)
Article
MathSciNet
MATH
Google Scholar
Spiegelhalter, D.J., Best, N., Carlin, B.P., van der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 64, 583–639 (2002)
Article
MATH
Google Scholar
Stephens, M.: Bayesian analysis of mixtures with an unknown number of components–an alternative to reversible jump methods. Ann. Stat. 28, 40–74 (2000)
Article
MathSciNet
MATH
Google Scholar
Tanner, M., Wong, W.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82, 528–550 (1987)
Article
MathSciNet
MATH
Google Scholar
van Mechelen, I., De Boeck, P.: Implicit taxonomy in psychiatric diagnosis: a case study. J. Soc. Clin. Psychol. 8, 276–287 (1989)
Article
Google Scholar