Antoniak, C.E.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Stat. 2, 1152–1174 (1974)
Article
MATH
MathSciNet
Google Scholar
Belitser, E., Enikeeva, F.: Empirical Bayesian test of the smoothness. Math. Methods Stat. 17, 1–18 (2008)
Article
MATH
MathSciNet
Google Scholar
Belitser, E., Levit, B.: On the empirical Bayes approach to adaptive filtering. Math. Methods Stat. 12, 131–154 (2003)
MathSciNet
Google Scholar
Berry, D.A., Christensen, R.: Empirical Bayes estimation of a binomial parameter via mixtures of Dirichlet processes. Ann. Stat. 7, 558–568 (1979)
Article
MATH
MathSciNet
Google Scholar
Clyde, M.A., George, E.I.: Flexible empirical Bayes estimation for wavelets. J. R. Stat. Soc. Ser. B 62, 681–698 (2000)
Article
MATH
MathSciNet
Google Scholar
Copas, J.B.: Compound decisions and empirical Bayes (with discussion). J. R. Stat. Soc. Ser. B 31, 397–425 (1969)
MATH
MathSciNet
Google Scholar
Cui, W., George, E.I.: Empirical Bayes vs. fully Bayes variable selection. J. Stat. Plann. Inference 138, 888–900 (2008)
Article
MATH
MathSciNet
Google Scholar
Deely, J.J., Lindley, D.V.: Bayes empirical Bayes. J. Am. Stat. Assoc. 76, 833–841 (1981)
Article
MATH
MathSciNet
Google Scholar
Diaconis, P., Freedman, D.: On the consistency of Bayes estimates. Ann. Stat. 14, 1–26 (1986)
Article
MATH
MathSciNet
Google Scholar
Efron, B.: Large-scale inference. Empirical Bayes methods for estimation, testing, and prediction. Cambridge University Press, Cambridge (2010)
Book
MATH
Google Scholar
Efron, B., Morris, C.: Limiting the risk of Bayes and empirical Bayes estimators. II. The empirical Bayes case. J. Am. Stat. Assoc. 67, 130–139 (1972a)
MATH
MathSciNet
Google Scholar
Efron, B., Morris, C.: Empirical Bayes on vector observations: an extension of Stein’s method. Biometrika 59, 335–347 (1972b)
Article
MATH
MathSciNet
Google Scholar
Efron, B., Morris, C.: Stein’s estimation rule and its competitors-an empirical Bayes approach. J. Am. Stat. Assoc. 68, 117–130 (1973a)
MATH
MathSciNet
Google Scholar
Efron, B., Morris, C.: Combining possibly related estimation problems. (With discussion by Lindley, D.V., Copas, J.B., Dickey, J.M., Dawid, A.P., Smith, A.F.M., Birnbaum, A., Bartlett, M.S., Wilkinson, G.N., Nelder, J.A., Stein, C., Leonard, T., Barnard, G.A., Plackett, R.L.). J. R. Stat. Soc. Ser. B 35, 379–421 (1973b)
Efron, B., Morris, C.N.: Data analysis using Stein’s estimator and its generalizations. J. Am. Stat. Assoc. 70, 311–319 (1973c)
Article
MathSciNet
Google Scholar
Favaro, S., Lijoi, A., Mena, R.H., Prünster, I.: Bayesian nonparametric inference for species variety with a two parameter Poisson–Dirichlet process prior. J. R. Stat. Soc. Ser. B 71, 993–1008 (2009)
Article
Google Scholar
Fisher, R.A., Corbet, A.S., Williams, C.B.: The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42–58 (1943)
Article
Google Scholar
Forcina, A.: Gini’s contributions to the theory of inference. Int. Stat. Rev. 50, 65–70 (1982)
Article
MATH
MathSciNet
Google Scholar
George, E.I., Foster, D.P.: Calibration and empirical Bayes variable selection. Biometrika 87, 731–747 (2000)
Article
MATH
MathSciNet
Google Scholar
Ghosh, J.K., Ramamoorthi, R.V.: Bayesian nonparametrics. Springer, New York (2003)
MATH
Google Scholar
Gini, C.: Considerazioni sulla probabilità a posteriori e applicazioni al rapporto dei sessi nelle nascite umane. Studi Economico-Giuridici. Università di Cagliari. III. Reprinted in Metron, vol. 15, pp. 133–172 (1911)
Good, I.J.: Breakthroughs in statistics: foundations and basic theory. In: Johnson, N.L., Kotz, S. (eds.) Introduction to Robbins (1992) An empirical Bayes approach to statistics, pp. 379–387. Springer, Berlin (1995)
Google Scholar
James, W., Stein, C.: Estimation with quadratic loss. In: Proceedings of Fourth Berkeley Symposium on Mathematics Statistics and Probability, vol. 1, pp. 361–379. University of California Press, California (1961)
Lehmann, E.L., Casella, G.: Theory of point estimation, 2nd edn. Springer, New York (1998)
MATH
Google Scholar
Liang, F., Paulo, R., Molina, G., Clyde, M.A., Berger, J.O.: Mixtures of \(g\)-priors for Bayesian variable selection. J. Am. Stat. Assoc. 103, 410–423 (2008)
Article
MATH
MathSciNet
Google Scholar
Liu, J.S.: Nonparametric hierarchical Bayes via sequential imputation. Ann. Stat. 24, 911–930 (1996)
Article
MATH
Google Scholar
Maritz, J.S., Lwin, T.: Empirical Bayes methods, 2nd edn. Chapman and Hall, London (1989)
MATH
Google Scholar
McAuliffe, J.D., Blei, D.M., Jordan, M.I.: Nonparametric empirical Bayes for the Dirichlet process mixture model. Stat. Comput. 16, 5–14 (2006)
Article
MathSciNet
Google Scholar
Morris, C.N.: Parametric empirical Bayes inference: theory and applications. J. Am. Stat. Assoc. 78, 47–55 (1983)
Article
MATH
Google Scholar
Petrone, S., Rousseau, J., Scricciolo, C.: Bayes and empirical Bayes: do they merge? Biometrika 101(2), 285–302 (2014)
Robbins, H.: An empirical Bayes approach to statistics. In: Proceedings of Third Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 157–163. University of California Press, California (1956)
Scott, J.G., Berger, J.O.: Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Stat. 38, 2587–2619 (2010)
Article
MATH
MathSciNet
Google Scholar
Stein, C.: Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceedings of Third Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 197–206. University of California Press, California (1956)
Szabó, B.T., van der Vaart, A.W., van Zanten, J.H.: Empirical Bayes scaling of Gaussian priors in the white noise model. Electron. J. Stat. 7, 991–1018 (2013)
Article
MATH
MathSciNet
Google Scholar