Skip to main content
Log in

Analytical Methods in Triangulation-Based Celestial Localization

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Optical measurements are a key part of modern interplanetary navigation. This work applies the statistically optimal Linear Optimal Sine Triangulation (LOST) algorithm to the problem of celestial navigation. In addition to optimal triangulation methods, celestial navigation requires the consideration of target ephemeris errors, light aberration, and light time-of-flight. In most cases, only light aberration and light time-of-flight change the expected direction of the measured line-of-sight. These effects are found to be non-negligible at typical observer velocities (for light aberration) and planet velocities (for light time-of-flight). The effects of the position uncertainty of planets are only important when the observer is close to them. The LOST framework provides a mechanism to conveniently consider all of these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thornton, C.L., Border, J.S.: Radiometric Tracking Techniques for Deep-Space Navigation. Wiley, Hoboken (2003). https://doi.org/10.1002/0471728454

    Book  Google Scholar 

  2. Owen, W., Duxbury, T., Acton, C., Synnott, S., Riedel, J., Bhaskaran, S.: A brief history of optical navigation at JPL. In: AAS Guidance and Control Conference. AAS 08-053 (2008)

  3. Christian, J.A.: A tutorial on horizon-based optical navigation and attitude determination with space imaging systems. IEEE Access 9, 19819–19853 (2021). https://doi.org/10.1109/ACCESS.2021.3051914

    Article  Google Scholar 

  4. Sheikh, S.I., Pines, D.J., Ray, P.S., Wood, K.S., Lovellette, M.N., Wolff, M.T.: Spacecraft navigation using X-ray pulsars. J. Guid. Control Dyn. 29(1), 49–63 (2006). https://doi.org/10.2514/1.13331

    Article  Google Scholar 

  5. Christian, J.A.: Starnav: autonomous optical navigation of a spacecraft by the relativistic perturbation of starlight. Sensors 19, 4064 (2019). https://doi.org/10.3390/s19194064

    Article  Google Scholar 

  6. Karimi, R.R., Mortari, D.: Interplanetary autonomous navigation using visible planets. J. Guid. Control Dyn. 38(6), 1151–1156 (2015). https://doi.org/10.2514/1.G000575

    Article  Google Scholar 

  7. Broschart, S.B., Bradley, N., Bhaskaran, S.: Kinematic approximation of position accuracy achieved using optical observations of distant asteroids. J. Spacecr. Rockets 56(5), 1383–1392 (2019). https://doi.org/10.2514/1.A34354

    Article  Google Scholar 

  8. Bradley, N., Olikara, Z., Bhaskaran, S., Young, B.: Cislunar navigation accuracy using optical observations of natural and artificial targets. J. Spacecr. Rockets 57(4), 777–792 (2020). https://doi.org/10.2514/1.A34694

    Article  Google Scholar 

  9. Franzese, V., Topputo, F.: Deep-space optical navigation exploiting multiple beacons. J. Astronaut. Sci. 69, 368–384 (2022). https://doi.org/10.1007/s40295-022-00303-5

    Article  Google Scholar 

  10. Henry, S., Christian, J.A.: Absolute triangulation algorithms for space exploration. J. Guid. Control Dyn. 46(1), 21–46 (2023). https://doi.org/10.2514/1.G006989

    Article  Google Scholar 

  11. Atkinson, R.D.: II–Some problems of interplanetary navigation. J. Navig. 3(4), 365–377 (1950). https://doi.org/10.1017/S0373463300035025

    Article  Google Scholar 

  12. Larmore, L.: Celestial observations for space navigation. Aero/Space Eng. 18(1), 37–42 (1959)

    Google Scholar 

  13. Carroll, J.: Interplanetary navigation by optical resection and inertial systems. Aero/Space Eng. 18(3), 53–56 (1959)

    Google Scholar 

  14. Bock, C.D., Mundo, C.J.: Guidance techniques for interplanetary travel. Am. Rocket Soc. J. 29(12), 931–940 (1959). https://doi.org/10.2514/8.4947

    Article  Google Scholar 

  15. Bock, C.D.: A high precision stellar navigator for interplanetary guidance. Planet. Space Sci. 7, 57–63 (1961). https://doi.org/10.1016/0032-0633(61)90285-9

    Article  Google Scholar 

  16. Haake, H.B., Welch, J.D.: A self-contained interplanetary navigator. IRE Trans. Aerosp. Navig. Electron. 8(1), 28–41 (1961)

    Article  Google Scholar 

  17. Stuhlinger, E.: The flight path of an electrically propelled space ship. J. Jet Propuls. 27(4), 410–414 (1957). https://doi.org/10.2514/8.12798

    Article  Google Scholar 

  18. Campbell, J.K., Synnott, S.P., Bierman, G.J.: Voyager orbit determination at Jupiter. IEEE Trans. Autom. Control 28(3), 256–268 (1983). https://doi.org/10.1109/TAC.1983.1103223

    Article  Google Scholar 

  19. Owen, W.M.: Methods of optical navigation. In: AAS/AIAA Space Flight Mechanics Meeting. AAS 11-215 (2011)

  20. Bhaskaran, S., Riedel, J.E., Synnott, S.P., Wang, T.C.: The deep space 1 autonomous navigation system: a post-flight analysis. In: AIAA/AAS Astrodynamics Specialist Conference (2000). https://doi.org/10.2514/6.2000-3935

  21. Polle, B., Frapard, B., Gill-Fernandez, J., Milic, E., Graziano, M., Rebordao, J., Motrena, P.: Autonomous navigation for interplanetary missions performance achievements based on real and flight images. In: 6th International ESA Conference on Guidance, Navigation and Control Systems (2006)

  22. Andreis, E., Franzese, V., Topputo, F.: Onboard orbit determination for deep-space cubesats. J. Guid. Control Dyn. 45(8), 1466–1480 (2022). https://doi.org/10.2514/1.G006294

    Article  Google Scholar 

  23. Casini, S., Cervone, A., Monna, B., Gill, E.: On line-of-sight navigation for deep-space applications: a performance analysis. Adv. Space Res. (2022). https://doi.org/10.1016/j.asr.2022.12.017

    Article  Google Scholar 

  24. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. 68(2), 146–157 (1997). https://doi.org/10.1006/cviu.1997.0547

    Article  Google Scholar 

  25. Hartley, R., Kahl, F.: Optimal algorithms in multiview geometry. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) Computer Vision–ACCV 2007, pp. 13–34. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-76386-4_2

    Chapter  Google Scholar 

  26. Kanatani, K., Sugaya, Y., Niitsuma, H.: Triangulation from two views revisited: Hartley-sturm vs. optimal correction. In: Proceedings of the British Machine Vision Conference (2008). https://doi.org/10.5244/C.22.18

  27. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  28. Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Photogramm. Eng. Remote Sens. 81(2), 103–107 (2015). https://doi.org/10.14358/PERS.81.2.103

    Article  Google Scholar 

  29. Armstrong, M.N.: Self-calibration from image sequences. PhD thesis, University of Oxford (1996)

  30. Sturm, P.F.: Vision 3d non calibrée: Contributions à la reconstruction projective et Étude des mouvements critiques pour l’auti-calibrage. PhD thesis, Institut National Polytechnique de Grenoble (1997)

  31. Stewenius, H., Schaffalitzky, F., Nister, D.: How hard is 3-view triangulation really? In: Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, pp. 686–6931 (2005). https://doi.org/10.1109/ICCV.2005.115

  32. Naqvi, A.M., Levy, R.J.: Some astronomical and geophysical considerations for space navigation. IEEE Trans. Aerosp. Navig. Electron. 10(3), 154–170 (1963). https://doi.org/10.1109/TANE.1963.4502114

    Article  Google Scholar 

  33. Lubey, D.P., Bhaskaran, S., Bradley, N., Olikara, Z.: Ice giant exploration via autonomous optical navigation. In: AAS/AIAA Astrodynamics Specialist Conference (2020)

  34. Folkner, W.: Uncertainties in the JPL planetary ephemeris. In: Proceedings of the Journées, p. 43 (2010)

  35. Bradley, J.: Iv. A letter from the reverend Mr. James Bradley Savilian Professor of astronomy at Oxford, and F. R. S. to Dr. Edmond Halley astronom reg. & c. giving an account of a new discovered motion of the fix’d stars. Philos. Trans. R. Soc. 34(406), 637–661 (1728). https://doi.org/10.1098/rstl.1727.0064

    Article  Google Scholar 

  36. Einstein, A.: Zur elektrodynamik bewegter körper. Ann. Phys. 322(10), 891–921 (1905). https://doi.org/10.1002/andp.19053221004

    Article  MATH  Google Scholar 

  37. Shuster, M.D.: Stellar aberration and parallax: a tutorial. J. Astronaut. Sci. 51(4), 477–494 (2003). https://doi.org/10.1007/BF03546295

    Article  Google Scholar 

  38. Hines, C.O.: Planetary aberration. Nature 163, 249 (1949). https://doi.org/10.1038/163249a0

    Article  Google Scholar 

  39. Markley, F.L., Crassidis, J.L.: Fundamentals of Spacecraft Attitude Determination and Control. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0802-8

    Book  MATH  Google Scholar 

  40. Kaplan, G.H.: High-precision algorithms for astrometry: a comparison of two approaches. Astron. J. 115, 361–372 (1998). https://doi.org/10.1086/300189

    Article  Google Scholar 

  41. Wahba, G.: A least square estimate of satellite attitude. SIAM Rev. 7(3), 409 (1965). https://doi.org/10.1137/1007077

    Article  Google Scholar 

  42. Moody, A.B.: Space navigation. Proc. IRE 50(5), 672–678 (1962). https://doi.org/10.1109/JRPROC.1962.288095

    Article  Google Scholar 

  43. Acton, C., Bachman, N., Semenov, B., Wright, E.: A look towards the future in the handling of space science mission geometry. Planet. Space Sci. 150, 9–12 (2018). https://doi.org/10.1016/j.pss.2017.02.013

    Article  Google Scholar 

  44. Acton, C.H.: Ancillary data services of Nasa’s navigation and ancillary information facility. Planet. Space Sci. 44(1), 65–70 (1996). https://doi.org/10.1016/0032-0633(95)00107-7

    Article  Google Scholar 

  45. Park, R.S., Folkner, W.M., Williams, J.G., Boggs, D.H.: The JPL planetary and lunar ephemerides de440 and de441. Astron. J. 161(3), 105 (2021). https://doi.org/10.3847/1538-3881/abd414

    Article  Google Scholar 

  46. Franzese, V., Topputo, F., Ankersen, F., Walker, R.: Deep-space optical navigation for m-Argo mission. J. Astronaut. Sci. 68, 1034–1055 (2021). https://doi.org/10.1007/s40295-021-00286-9

    Article  Google Scholar 

  47. McKee, P.D.: Autonomous navigation in deep space using optical measurements of unresolved planets and stars. PhD thesis, Rensselaer Polytechnic Institute (2022)

  48. Mallama, A., Hilton, J.L.: Computing apparent planetary magnitudes for the astronomical almanac. Astron. Comput. 25, 10–24 (2018). https://doi.org/10.1016/j.ascom.2018.08.002

    Article  Google Scholar 

  49. Whitmell, C.T.: Brightness of a planet. Observatory 30, 96–100 (1907)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sébastien Henry or John A. Christian.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An earlier version of this manuscript appeared as paper SIW22-36 at the 3rd Space Imaging Workshop.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry, S., Christian, J.A. Analytical Methods in Triangulation-Based Celestial Localization. J Astronaut Sci 70, 37 (2023). https://doi.org/10.1007/s40295-023-00402-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00402-x

Keywords

Navigation