Skip to main content
Log in

A Physic-Informed Neural Network Approach to Orbit Determination

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper introduces a method for solving orbit determination problems named Physics Informed Orbit Determination. We use a particular kind of single-layer, feed-forward neural network with random input weights and biases called Extreme Learning Machines to estimate the spacecraft’s state. The least-squares estimate is used as the baseline for the loss function, to which a regularizing term based on the differential equations modeling the dynamics of the problem is added. This ensures that the learned relationship between input and output is compliant with the physics of the problem while also fitting the observation data. The method works with range/range-rate or angular observations, either in Keplerian or non-Keplerian dynamics. The method is tested on synthetically generated data, with and without perturbations. The results are comparable with the batch least-squares solution, with the advantage of not requiring an initial guess and solving for the entire trajectory without any integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data source employed in this paper can be made available by the authors upon reasonable request.

Notes

  1. http://gmat.sourceforge.net/docs/R2020a/html/Propagator.html.

References

  1. Gauss, C.F.: Theoria motus corporum coelestium in sectionibus conicis solem ambientium, vol. 7. FA Perthes, Gotha (1877)

    MATH  Google Scholar 

  2. Escobal, P.: Methods of Orbit Determination. Wiley, New York (1970)

    Google Scholar 

  3. Gooding, R.H.: A new procedure for the solution of the classical problem of minimal orbit determination from three lines of sight. Celest. Mech. Dyn. Astron. 66(4), 387–423 (1996)

    Article  MATH  Google Scholar 

  4. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. CRC Press, Boca Raton (2011)

    Book  MATH  Google Scholar 

  5. Schutz, B., Tapley, B., Born, G.H: Statistical Orbit Determination. Elsevier, Amsterdam (2004)

  6. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, vol. 12. Springer, Dordrecht (2001)

    MATH  Google Scholar 

  7. Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises, vol. 4. Wiley, New York (2012)

    MATH  Google Scholar 

  8. Lefebvre, T., Bruyninckx, H., De Schutter, J.: Kalman filters for non-linear systems: a comparison of performance. Int. J. Control 77(7), 639–653 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, L., Wehbe, Y.: Extended kalman filtering based real-time dynamic state and parameter estimation using pmu data. Electr. Power Syst. Res. 103, 168–177 (2013)

    Article  Google Scholar 

  10. Lefebvre, T., Bruyninckx, H., De Schutter, J.: A the linear regression kalman filter. In: Nonlinear Kalman Filtering for Force-Controlled Robot Tasks, pp. 205–210. Springer, Berlin (2005)

  11. Christian, J.A., Lightsey, E.G.: Review of options for autonomous cislunar navigation. J. Spacecr. Rockets 46(5), 1023–1036 (2009)

    Article  Google Scholar 

  12. Miller, W.T., Werbos, P.J., Sutton, R.S.: Neural Networks for Control. MIT, Cambridge (1995)

    Book  MATH  Google Scholar 

  13. Furfaro, R., Linares, R., Jah, M.K., Gaylor, D.: Mapping sensors measurements to the resident space objects behavior energy and state parameters space via extreme learning machines. In: International Astronautical Congress (2016)

  14. Sharma, S.: Machine Learning Applications in Spacecraft State and Environment Estimation. PhD thesis (2018)

  15. Lee, B., Kim, W.-G., Lee, J., Hwang, Y.: Machine learning approach to initial orbit determination of unknown leo satellites. In: 2018 SpaceOps Conference, p. 2566 (2018)

  16. Peng, H., Bai, X.: Artificial neural network-based machine learning approach to improve orbit prediction accuracy. J. Spacecr. Rockets 55(5), 1248–1260 (2018)

    Article  Google Scholar 

  17. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schmidt, W.F., Kraaijveld, M.A., Duin, R.P.W. et al.: Feed forward neural networks with random weights. In: International Conference on Pattern Recognition, p. 1. IEEE Computer Society Press, Washington (1992)

  19. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  20. Dwivedi, V., Srinivasan, B.: Physics informed extreme learning machine (PIELM)–a rapid method for the numerical solution of partial differential equations. Neurocomputing 391, 96–118 (2020)

    Article  Google Scholar 

  21. Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech. Eng. 360, 112789 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D.E., Kuhl, E.: Physics-informed neural networks for cardiac activation mapping. Front. Phys. 8, 42 (2020)

    Article  Google Scholar 

  23. Mortari, D.: The theory of connections: connecting points. Mathematics 5(4), 57 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: a fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021)

    Article  Google Scholar 

  25. Leake, C., Mortari, D.: Deep theory of functional connections: a new method for estimating the solutions of partial differential equations. Mach. Learn. Knowl. Extract. 2(1), 37–55 (2020)

    Article  Google Scholar 

  26. Huang, G.-B., Chen, L., Siew, C.K., et al.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  27. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical systems, the three-body problem and space mission design. In: Equadiff 99: (In 2 Volumes), pp. 1167–1181. World Scientific, Singapore (2000)

  28. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marquardt, D.W: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

  30. Vereš, P., Farnocchia, D., Chesley, S.R., Chamberlin, A.B.: Statistical analysis of astrometric errors for the most productive asteroid surveys. Icarus 296, 139–149 (2017)

    Article  Google Scholar 

  31. Schiassi, E., De Florio, M., D’Ambrosio, A., Mortari, D., Furfaro, R.: Physics-informed neural networks and functional interpolation for data-driven parameters discovery of epidemiological compartmental models. Mathematics 9(17), 2069 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Furfaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scorsoglio, A., Ghilardi, L. & Furfaro, R. A Physic-Informed Neural Network Approach to Orbit Determination. J Astronaut Sci 70, 25 (2023). https://doi.org/10.1007/s40295-023-00392-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00392-w

Keywords

Navigation