Skip to main content

Advertisement

Log in

Optimizing Multi-spacecraft Cislunar Space Domain Awareness Systems via Hidden-Genes Genetic Algorithm

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper proposes an optimization problem formulation to tackle the challenges of cislunar Space Domain Awareness (SDA) through multi-spacecraft monitoring. Due to the large volume of interest as well as the richness of the dynamical environment, traditional design approaches for Earth-based architectures are known to have challenges in meeting design requirements for the cislunar SDA; thus, there is a growing need to have a multi-spacecraft system in cislunar orbits for SDA. The design of multi-spacecraft-based cislunar SDA architecture results in a complex multi-objective optimization problem, where parameters such as number of spacecraft, observability, and orbit stability must be taken into account simultaneously. Through the use of a multi-objective hidden genes genetic algorithm, this study explores the entirety of the design space associated with the cislunar SDA problem. A demonstration case study shows that our approach can provide architectures optimized for both cost and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Holzinger, M.J., Chow, C.C., Garretson, P.: A primer on cislunar space. Technical report (2021)

  2. Frueh, C., Howell, K., Demars, K.J., Bhadauria, S.: Cislunar space situational awareness. In: 31st AIAA/AAS Space Flight Mechanics Meeting, pp. 6–7 (2021)

  3. Grebow, D.J., Ozimek, M.T., Howell, K.C., Folta, D.C.: Multibody orbit architectures for lunar south pole coverage. J. Spacecr. Rockets 45, 344–358 (2008). https://doi.org/10.2514/1.28738

    Article  Google Scholar 

  4. Fowler, E.E., Hurtt, S.B., Paley, D.A.: Orbit design for cislunar space domain awareness. In: 2nd IAA Conference on Space Situational Awareness (ICSSA), Washington, District of Columbia (2020)

  5. Cunio, P.M., Bever, M.J., Flewelling, B.R.: Payload and constellation design for a solar exclusion-avoiding cislunar ssa fleet. AMOS, Maui, Hawai’i. www.amostech.com (2020)

  6. Bolden, M., Craychee, T., Griggs, E.: An evaluation of observing constellation orbit stability, low signal-to-noise, and the too-short-arc challenges in the cislunar domain, Maui, Hawai’i. www.amostech.com (2020)

  7. Dao, P., Haynes, K., Frey, V., Hufford, C., Schindler, K., Payne, T., Hollon, J.: Simulated photometry of objects in cislunar orbits, Maui, Hawai’i. www.amostech.com (2020)

  8. Thompson, M.R., Ré, N.P., Meek, C., Cheetham, B.: Cislunar Orbit Determination and Tracking via Simulated Space-Based Measurements. Hawai’i, Maui (2021)

    Google Scholar 

  9. Frueh, C., Howell, K., Demars, K.J., Bhadauria, S., Gupta, M.: Cislunar space traffic management: surveillance through earth-moon resonance orbits. http://conference.sdo.esoc.esa.int (2021)

  10. Vendl, J.K., Holzinger, M.J.: Cislunar periodic orbit analysis for persistent space object detection capability. J. Spacecr. Rockets 58, 1174–1185 (2021). https://doi.org/10.2514/1.A34909

    Article  Google Scholar 

  11. Wilmer, A.P., Bettinger, R.A., Little, B.D.: Cislunar periodic orbits for earth-moon l1 and l2 lagrange point surveillance. J. Spacecr. Rockets (2022). https://doi.org/10.2514/1.a35337

  12. Dahlke, J.A., Wilmer, A.P., Bettinger, R.A.: Preliminary comparative assessment of L2 and L3 surveillance using select Cislunar periodic orbits. In: AAS/AIAA Astrodynamics Specialist Conference, pp. 1–19 (2022)

  13. Fedeler, S., Holzinger, M., Whitacre, W.: Sensor tasking in the cislunar regime using Monte Carlo tree search. Adv. Space Res. 70, 792–811 (2022). https://doi.org/10.1016/j.asr.2022.05.003

    Article  Google Scholar 

  14. Klonowski, M., Holzinger, M.J., Owens, N., Aerospace, F.B.: Optimal cislunar architecture design using Monte Carlo tree search methods, Maui, Hawai’i. www.amostech.com (2022)

  15. Badura, G., Shimane, Y., Gregoire, A., Patel, R., Gilmartin, M., Gangolli, K., Visonneau, L., Tysor, J., Manojkumar, S., Humphrey, F., Valenta, C., Blair, R., Lourenco, N., Hodkin, J., Sudol, A., Borowitz, M., Gunter, B., Christian, J., Ho, K.: System design and analysis for cislunar space domain awareness through distributed sensors. In: AAS/AIAA Astrodynamics Specialist Conference, Charlotte, NC, pp. 1–20 (2022)

  16. Gad, A., Abdelkhalik, O.: Hidden genes genetic algorithm for multi-gravity-assist trajectories optimization. J. Spacecr. Rockets 48(4), 629–641 (2011). https://doi.org/10.2514/1.52642

    Article  Google Scholar 

  17. Abdelkhalik, O., Darani, S.: Hidden genes genetic algorithms for systems architecture optimization. In: Proceedings of the 2016 Genetic and Evolutionary Computation Conference, pp. 629–636 (2016). https://doi.org/10.1145/2908812.2908819

  18. Abdelkhalik, O., Darani, S.: Evolving hidden genes in genetic algorithms for systems architecture optimization. J. Dyn. Syst. Meas. Control Trans. ASME 140(10), 1–11 (2018). https://doi.org/10.1115/1.4040207

    Article  Google Scholar 

  19. Howell, K.C.: Three-dimensional, periodic, halo orbits. Celest. Mech. 32, 53–71 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astronomy 81(1–2), 63–73 (2001). https://doi.org/10.1023/A:1013359120468

    Article  MathSciNet  MATH  Google Scholar 

  21. Belbruno, E.: Analytic estimation of weak stability boundaries and low energy transfers. Celestial Mechanics. Dedicated to Donald Saari for his 60th Birthday 292, 17 (2002)

  22. Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design. Wiley, Hoboken (2014)

    Book  Google Scholar 

  23. Boudad, K.K., Howell, K.C., Davis, D.C.: Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem. Adv. Space Res. 66(9), 2194–2214 (2020). https://doi.org/10.1016/j.asr.2020.07.044

    Article  Google Scholar 

  24. Felt, E.J.: Development Corps Overview. Space Vehicles Directorate, Air Force Research Laboratory (2020)

  25. Ellithy, A., Abdelkhalik, O., Englander, J.: Multi-objective hidden genes genetic algorithm for multigravity-assist trajectory optimization. J. Guidance Control Dyn. 45(7), 1269–1285 (2022). https://doi.org/10.2514/1.G006415

    Article  Google Scholar 

  26. Kajitani, I., Hoshino, T., Iwata, M., Higuchi, T.: Variable length chromosome GA for evolvable hardware. In: Proceedings of the IEEE Conference on Evolutionary Computation, pp. 443–447 (1996). https://doi.org/10.1109/icec.1996.542405

  27. Kim, I.Y., De Weck, O.L.: Variable chromosome length genetic algorithm for progressive refinement in topology optimization. Struct. Multidisc. Optim. 29(6), 445–456 (2005). https://doi.org/10.1007/s00158-004-0498-5

    Article  Google Scholar 

  28. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-II. IEEE Trans. Evolut. Comput. 6, 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  29. Ashcraft, J.N., Douglas, E.S., Kim, D., Smith, G.A., Cahoy, K., Connors, T., Derby, K.Z., Gasho, V., Gonzales, K., Guthery, C.E., : The versatile cubesat telescope: going to large apertures in small spacecraft. In: UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts X, vol. 11819, pp. 15–25 (2021). SPIE

  30. Aperture-Optical-Science: CubeSat Telescopes. www.apertureos.com (2021)

Download references

Acknowledgements

This work has been funded by the Georgia Tech Research Institute (GTRI)’s Independent Research and Development (IRAD) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koki Ho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visonneau, L., Shimane, Y. & Ho, K. Optimizing Multi-spacecraft Cislunar Space Domain Awareness Systems via Hidden-Genes Genetic Algorithm. J Astronaut Sci 70, 22 (2023). https://doi.org/10.1007/s40295-023-00386-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00386-8

Keywords

Navigation