Skip to main content
Log in

Simulation of Debris Events in Selected Low Lunar Orbits

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Simulations of spacecraft breakup events in low lunar orbit are conducted with the aim of determining the longevity of the resulting debris and the hazards it could pose. The trajectories of approximately 97,000 debris particles across eight Monte Carlo breakup simulations are propagated for 1 year using a high-precision lunar trajectory model. Debris was found to be especially long-lasting for breakups in circular polar orbits at 200 km altitude, in retrograde equatorial orbits at 100 km or higher, and in lunar frozen orbits. Analysis of the locations at which polar-orbiting debris tended to impact the Moon reveals a surprising asymmetry and significant accumulations in certain regions. Finally, estimates of the collision probability over 1 year to other notional spacecraft varied from \(10^{-9}\) to \(10^{-13}\), suggesting a low risk of collision, but a significant number of close approaches within 5 km were observed. The results of this study provide new insights into the overall behavior of debris in lunar orbit and improve understanding of the consequences of a debris event in this orbital environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kessler, D.J., Cour-Palais, B.J.: Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83(A6), 2637–2646 (1978). https://doi.org/10.1029/JA083iA06p02637

    Article  Google Scholar 

  2. Johnson, N.L.: Man-made debris in and from lunar orbit. In: 50th International Astronautical Congress Proceedings (1999)

  3. Meador, J.: Long-term orbit stability of the Apollo 11 “Eagle” lunar module ascent stage. Planetary Space Sci. 205 (2021). https://doi.org/10.1016/j.pss.2021.105304

  4. Boone, N.R., Bettinger, R.A.: Long-term evolution of debris clouds in low lunar orbit. In: 2022 Advanced Maui Optical Surveillance Conference (AMOS) Proceedings (2022)

  5. Lehman, D.H., Hoffman, T.L., Havens, G.G.: The Gravity Recovery and Interior Laboratory mission. In: 2013 IEEE Aerospace Conference Proceedings (2013). https://doi.org/10.1109/AERO.2013.6496866

  6. Vondrak, R., Keller, J., Garvin, J.: Lunar Reconnaissance Orbiter (LRO): observations for lunar exploration and science. Space Sci. Rev. 150, 391–419 (2010). https://doi.org/10.1007/s11214-010-9631-5

    Article  Google Scholar 

  7. Wang, X.-D., Bian, W., Wang, J.-S., Liu, J.-J., Zou, Y.-L., Zhang, H.-B., Lü, C., Liu, J.-Z., Zuo, W., Su, Y., Wen, W.-B., Wang, M., Ouyang, Z.-Y., Li, C.-L.: Acceleration of scattered solar wind protons at the polar terminator of the moon: results from Chang’E-1/SWIDs. Geophys. Res. Lett. 37(7) (2010). https://doi.org/10.1029/2010GL042891

  8. Li, P., Hu, X., Huang, Y., Wang, G., Jiang, D., Zhang, X., Cao, J., Xin, N.: Orbit determination for Chang’E-2 lunar probe and evaluation of lunar gravity models. Sci. China Phys. Mech. Astron. 55, 514–522 (2012). https://doi.org/10.1007/s11433-011-4596-2

    Article  Google Scholar 

  9. Goswami, J.N., Annadurai, M.: Chandrayaan-1 mission to the moon. Acta Astronaut. 63(11), 1215–1220 (2008). https://doi.org/10.1016/j.actaastro.2008.05.013

    Article  Google Scholar 

  10. Sundararajan, V.: Overview and technical architecture of india’s Chandrayaan-2 mission to the moon. In: 2018 AIAA Aerospace Sciences Meeting (2018). https://doi.org/10.2514/6.2018-2178

  11. Kato, M., Sasaki, S., Tanaka, K., Iijima, Y., Takizawa, Y.: The Japanese lunar mission SELENE: science goals and present status. Adv. Space Res. 42(2), 294–300 (2008). https://doi.org/10.1016/j.asr.2007.03.049

    Article  Google Scholar 

  12. Hood, L.L., Zakharian, A., Halekas, J., Mitchell, D.L., Lin, R.P., Acuña, M.H., Binder, A.B.: Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data. J. Geophys. Res. 106(E11), 27825–27839 (2001). https://doi.org/10.1029/2000JE001366

    Article  Google Scholar 

  13. Lara, M.: Design of long-lifetime lunar orbits: a hybrid approach. Acta Astronaut. 69(3), 186–199 (2011). https://doi.org/10.1016/j.actaastro.2011.03.009

    Article  Google Scholar 

  14. Park, S.-Y., Junkins, J.: Orbital mission analysis for a lunar mapping satellite. In: Astrodynamics Conference Proceedings (1994). https://doi.org/10.2514/6.1994-3717

  15. Song, Y.-J., Park, S.-Y., Kim, H.-D., Sim, E.-S.: Development of precise lunar orbit propagator and lunar polar orbiter’s lifetime analysis. J. Astron. Space Sci. 27(2), 97–106 (2010). https://doi.org/10.5140/JASS.2010.27.2.097

    Article  Google Scholar 

  16. Hughes, S.: General Mission Analysis Tool (GMAT) technical specifications. NASA Technical Reports Server (1 Jan 2007)

  17. National Aeronautics and Space Administration: a standardized lunar coordinate system for the lunar reconnaissance orbiter and lunar datasets. https://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf (1 Oct 2008)

  18. Folkner, W.M., Williams, J.G., Boggs, D.H.: The planetary and lunar ephemeris DE 421. IPN Progr. Rep. 42–178, 15 (2009)

    Google Scholar 

  19. National Aeronautics and Space Administration: lunar gravity field: GRGM1200A. https://pgda.gsfc.nasa.gov/products/50

  20. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition, pp. 388–389. American Institute of Aeronautics and Astronautics, Reston, VA (1999)

  21. Meyer, K.W., Buglia, J.J., Desai, P.N.: Lifetimes of lunar satellite orbits. NASA Technical Paper 3394 (1994)

  22. Anselmo, L., Pardini, C.: Long-term dynamical evolution of high area-to-mass ratio debris released into high Earth orbits. Acta Astronaut. 67(1), 204–216 (2010). https://doi.org/10.1016/j.actaastro.2009.10.017

    Article  Google Scholar 

  23. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, pp. 577–578. Microcosm Press, Hawthorne, CA (2007)

  24. Montenbruck, O.: Satellite Orbits: Models, Methods, Applications, pp. 81–83. Springer, Heidelberg (2000)

  25. Johnson, N.L., Krisko, P.H., Liou, J.-C., Anz-Meador, P.D.: NASA’s new breakup model of EVOLVE 4.0. Adv. Space Res. 28(9), 1377–1384 (2001). https://doi.org/10.1016/S0273-1177(01)00423-9

    Article  Google Scholar 

  26. Frey, S., Colombo, C.: Transformation of satellite breakup distribution for probabilistic orbital collision hazard analysis. J. Guid. Control. Dyn. 44(1), 88–105 (2021). https://doi.org/10.2514/1.G004939

    Article  Google Scholar 

  27. Krisko, P.H.: Proper implementation of the 1998 NASA breakup model. Orbital Debris Q. News 15(4), 4–5 (2011)

    Google Scholar 

  28. Weisstein, E.W.: Sphere point picking. Wolfram Research. https://mathworld.wolfram.com/SpherePointPicking.html

  29. Vedder, J.D., Tabor, J.L.: New method for estimating low-earth-orbit collision probabilities. J. Spacecr. Rocket. 28(2), 210–215 (1991). https://doi.org/10.2514/3.26232

    Article  Google Scholar 

  30. McCormick, B.: Collision probabilities in geosynchronous orbit and techniques to control the environment. Adv. Space Res. 6(7), 119–126 (1986). https://doi.org/10.1016/0273-1177(86)90220-6

    Article  Google Scholar 

  31. Lidtke, A.A., Lewis, H.G., Armellin, R.: Statistical analysis of the inherent variability in the results of evolutionary debris models. Adv. Space Res. 59(7), 1698–1714 (2017). https://doi.org/10.1016/j.asr.2017.01.004

    Article  Google Scholar 

Download references

Funding

Funding was provided by the Department of the Air Force.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Boone.

Ethics declarations

Conflict of interest

The authors have nothing to declare, to include any potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boone, N., Bettinger, R. Simulation of Debris Events in Selected Low Lunar Orbits. J Astronaut Sci 70, 16 (2023). https://doi.org/10.1007/s40295-023-00382-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00382-y

Keywords

Navigation