Skip to main content

Advertisement

Log in

Minimum Cost Perturbed Multi-impulsive Maneuver Methodology to Accomplish an Optimal Deployment Scheduling for a Satellite Constellation

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The optimal design of a satellite constellation is a highly constrained, multidisciplinary problem. The satellite constellation requires a flexible optimal deployment algorithm that can consider constraints and perturbations. The mission is cost-effective if there is no need to redevelop the deployment algorithm by changing the number of satellites. Therefore, the main purpose of this paper is to develop an optimal flexible algorithm to deploy m identical satellites to the desired satellite constellation. For this purpose, the Intelligent Optimal Satellite Constellation Deployment (IOSCD) algorithm is proposed. This algorithm's intelligence comes from identifying the feasible scenarios and, regarding the mission requirements such as time synchronization and collision avoidance constraints, is performed via an evolutionary optimization algorithm. The optimization algorithm plays two coupled roles in the deployment mission scheduling: selecting the best feasible deployment scenario and time planning for simulations maneuvers. Developing a proper maneuver is also performed in this paper. For this purpose, a proposed methodology called Multi-Impulsive maneuver combined with Lambert Targeting Problem Correction (MILTPC) is introduced. The LTPC is established in the last maneuver to make the transfer orbit tangential to the final orbit and consider orbital perturbations to reduce fuel consumption. The optimization algorithm is applied to IOSCD and MILTPC simultaneously to achieve the best scenario in terms of fuel consumption. The four meta-heuristic optimization algorithms Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Invasive Weed Optimization (IWO), and the hybrid IWO/PSO are examined once only on MILTPC and once on constellation deployment missions to select the best one for the present investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim, H., Chang, Y.-K.: Optimal mission scheduling for hybrid synthetic aperture radar satellite constellation based on weighting factors. Aerosp. Sci. Technol. 107, 106287 (2020)

    Google Scholar 

  2. Nguyen, V.A., Nogués-Correig, O., Yuasa, T., Masters, D., Irisov, V.: Initial GNSS phase altimetry measurements from the spire satellite constellation. Geophys. Res. Lett. 47, e2020GL088308 (2020)

    Google Scholar 

  3. Alessi, E.M., Buzzoni, A., Daquin, J., Carbognani, A., Tommei, G.: Dynamical properties of the Molniya satellite constellation: long-term evolution of orbital eccentricity. Acta Astronaut. 179, 659–669 (2021)

    Google Scholar 

  4. Bernhard, P., Deschamps, M., Zaccour, G.: Large satellite constellations and space debris: exploratory analysis of strategic management of the space commons. Eur. J. Oper. Res. 304(3), 1140–1157 (2022)

    MathSciNet  MATH  Google Scholar 

  5. McManus, L., Schaub, H.: Establishing a formation of small satellites in a lunar flower constellation. J. Astronaut. Sci. 63, 263–286 (2016)

    Google Scholar 

  6. Del Portillo, I., Cameron, B.G., Crawley, E.F.: A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronaut. 159, 123–135 (2019)

    Google Scholar 

  7. Qu, Z., Zhang, G., Cao, H., Xie, J.: LEO satellite constellation for Internet of Things. IEEE Access 5, 18391–18401 (2017)

    Google Scholar 

  8. Marchetti, D., De Santis, A., Jin, S., Campuzano, S.A., Cianchini, G., Piscini, A.: Co-seismic magnetic field perturbations detected by swarm three-satellite constellation. Remote Sens. 12, 1166 (2020)

    Google Scholar 

  9. Jakob, P., Shimizu, S., Yoshikawa, S., Ho, K.: optimal satellite constellation spare strategy using multi-echelon inventory control. J. Spacecr. Rockets 56, 1449–1461 (2019)

    Google Scholar 

  10. Valicka, C.G., Garcia, D., Staid, A., Watson, J.-P., Hackebeil, G., Rathinam, S., Ntaimo, L.: Mixed-integer programming models for optimal constellation scheduling given cloud cover uncertainty. Eur. J. Oper. Res. 275, 431–445 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Ortore, E., Ulivieri, C.: A small satellite constellation for continuous coverage of mid-low earth latitudes. J. Astronaut. Sci. 56, 185–198 (2008)

    Google Scholar 

  12. Guan, M., Xu, T., Gao, F., Nie, W., Yang, H.: Optimal walker constellation design of LEO-based global navigation and augmentation system. Remote Sens. 12, 1845 (2020)

    Google Scholar 

  13. Brisco, B., Mahdianpari, M., Mohammadimanesh, F.: Hybrid compact polarimetric SAR for environmental monitoring with the RADARSAT constellation mission. Remote Sens. 12, 3283 (2020)

    Google Scholar 

  14. Trujillo, A.E., de Neufville, R.: Deployment strategies for a financially viable remote sensing constellation. In: 2020 IEEE Aerospace Conference. pp. 1–12. IEEE (2020)

  15. Ma, F., Zhang, X., Li, X., Cheng, J., Guo, F., Hu, J., Pan, L.: Hybrid constellation design using a genetic algorithm for a LEO-based navigation augmentation system. GPS Solut. 24, 1–14 (2020)

    Google Scholar 

  16. Wang, S., Yu, H., Yuan, Y., Liu, G., Fei, Z.: AI-enhanced constellation design for NOMA system: a model driven method. China Commun. 17, 100–110 (2020)

    Google Scholar 

  17. Ely, T.A., Lieb, E.: Constellations of elliptical inclined lunar orbits providing polar and global coverage. J. Astronaut. Sci. 54, 53–67 (2006)

    MathSciNet  Google Scholar 

  18. Buzzi, P.G., Selva, D., Hitomi, N., Blackwell, W.J.: Assessment of constellation designs for earth observation: application to the TROPICS mission. Acta Astronaut. 161, 166–182 (2019)

    Google Scholar 

  19. Chenina, H., Benatia, D., Boulakroune, M.: New modeling approach of laser communication in constellation and through atmospheric disturbances. Bull. Electr. Eng. Inf. 10, 2088–2099 (2021)

    Google Scholar 

  20. Liu, C., Zhang, W., Lan, B.: Design and analysis of chain construction of navigation constellation. In: China Satellite Navigation Conference. pp. 45–55. Springer (2018)

  21. Zong, P., Kohani, S.: Optimal satellite LEO constellation design based on global coverage in one revisit time. Int. J. Aerosp. Eng. 2019, 4373749 (2019)

    Google Scholar 

  22. Liu, Y., Chen, Q., Li, C., Wang, F.: Mission planning for Earth observation satellite with competitive learning strategy. Aerosp. Sci. Technol. 118, 107047 (2021)

    Google Scholar 

  23. Pan, X., Xu, M., Santos, R.: Trajectory optimization for solar sail in cislunar navigation constellation with minimal lightness number. Aerosp. Sci. Technol. 70, 559–567 (2017)

    Google Scholar 

  24. Di Carlo, M., Ricciardi, L.A., Vasile, M.: Multi-objective optimisation of constellation deployment using low-thrust propulsion. In: AIAA/AAS Astrodynamics Specialist Conference, p. 5577 (2016)

  25. Chen, H., Ma, J.: Phasing trajectories to deploy a constellation in a halo orbit. J. Guid. Control. Dyn. 40, 2662–2667 (2017)

    Google Scholar 

  26. McGrath, C.N., Macdonald, M.: General perturbation method for satellite constellation reconfiguration using low-thrust maneuvers. J. Guid. Control. Dyn. 42, 1676–1692 (2019)

    Google Scholar 

  27. Morgan, S.J., McGrath, C., De Weck, O.L.: Mobile target tracking using a reconfigurable low earth orbit constellation. In: ASCEND 2020, p. 4247 (2020)

  28. Chen, Y., Mahalec, V., Chen, Y., Liu, X., He, R., Sun, K.: Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolution. Eur. J. Oper. Res. 242, 10–20 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Scialom, U.: Optimization of satellite constellation reconfiguration, Master of Science Thesis, Aeronautics and Astronautics at the Massachusetts Institute of Technology (2003)

  30. Appel, L., Guelman, M., Mishne, D.: Optimization of satellite constellation reconfiguration maneuvers. Acta Astronaut. 99, 166–174 (2014)

    Google Scholar 

  31. Paek, S.W., Kim, S., de Weck, O.: Optimization of reconfigurable satellite constellations using simulated annealing and genetic algorithm. Sensors. 19, 765 (2019)

    Google Scholar 

  32. Fakoor, M., Bakhtiari, M., Soleymani, M.: Optimal design of the satellite constellation arrangement reconfiguration process. Adv. Sp. Res. 58, 372–386 (2016)

    Google Scholar 

  33. Soleymani, M., Fakoor, M., Bakhtiari, M.: Optimal mission planning of the reconfiguration process of satellite constellations through orbital maneuvers: A novel technical framework. Adv. Space Res. 63, 3369–3384 (2019)

    Google Scholar 

  34. Curtis, H.D.: Orbital Mechanics for Engineering Students, pp. 247–254. Butterworth-Heinemann, Oxford (2013)

  35. Avanzini, G.: A simple Lambert algorithm. J. Guid. Control. Dyn. 31, 1587–1594 (2008)

    Google Scholar 

  36. Kriz, J.: A uniform solution of the Lambert problem. Celest. Mech. 14, 509–513 (1976)

    MathSciNet  MATH  Google Scholar 

  37. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994)

    Google Scholar 

  38. Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and Neural Networks, pp. 43–55. Springer, Cham (2019)

  39. Houck, C.R., Joines, J., Kay, M.G.: A genetic algorithm for function optimization: a Matlab implementation. NCSU-IE TR 95, 1–10 (1995)

    Google Scholar 

  40. Yang, Y., Xu-rong, D., Li, F., Xiao, M.A.O.: Research on hybrid navigation constellation reconfiguration method. Aerosp. Shanghai. 19–22 (2012)

  41. Owis, A.H.: Satellite constellation reconfiguration using the approximating sequence riccati equations. Theory Appl. Math. Comput. Sci. 3, 99–106 (2013)

    Google Scholar 

  42. Lancaster, P., Rodman, L.: Algebraic Riccati Equations, pp. 329–332, Clarendon Press, Boca Raton (1995)

  43. Laub, A.: A Schur method for solving algebraic Riccati equations. IEEE Trans. Autom. Contr. 24, 913–921 (1979)

    MathSciNet  MATH  Google Scholar 

  44. Laub, A.J.: Invariant subspace methods for the numerical solution of Riccati equations. In: Bittanti, S., Laub, A.J., Willems, J.C. (eds.) The Riccati Equation, pp. 163–196. Springer, Berlin (1991)

    MATH  Google Scholar 

  45. Lee, H.W., Ho, K.: Binary integer linear programming formulation for optimal satellite constellation reconfiguration. In: AAS/AIAA Astrodynamics Specialist Conference (2020)

  46. He, X., Li, H., Yang, L., Zhao, J.: Reconfigurable satellite constellation design for disaster monitoring using physical programming. Int. J. Aerosp. Eng. 2020(11), 1–15 (2020)

    Google Scholar 

  47. Arnas, D., Linares, R.: Global reconfiguration options for 2D lattice flower constellations and slotting architectures. In: AAS/AIAA Astrodynamics Specialist Conference (2021)

  48. Cheng, J., Shanbao, H., Yiming, X., Jun, X.: Research on reconfiguration of navigation constellation with inter-satellite links [J]. Spacecr. Eng. 22(4) (2013)

  49. Budianto, I.A., Olds, J.R.: Design and deployment of a satellite constellation using collaborative optimization. J. Spacecr. Rockets 41, 956–963 (2004)

    Google Scholar 

  50. Budianto, I.A., Olds, J.R.: A collaborative optimization approach to design and deployment of a space based infrared system constellation. In: 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484), pp. 385–393. IEEE (2000)

  51. Bainum, P.M., Strong, A., Tan, Z., Capó-Lugo, P.A.: Techniques for deploying elliptically orbiting constellations in along-track formation. Acta Astronaut. 57, 685–697 (2005)

    Google Scholar 

  52. Mahdisoozani, H., Bakhtiari, M., Daneshjoo, K.: Developing novel multi-plane satellite constellation deployment methods using the concept of nodal precession. Adv. Space Res. 68(8), 3141–3158 (2021)

    Google Scholar 

  53. Paek, S.W., Kronig, L.G., Ivanov, A.B., de Weck, O.L.: Satellite constellation design algorithm for remote sensing of diurnal cycles phenomena. Adv. Space Res. 62, 2529–2550 (2018)

    Google Scholar 

  54. Lee, H.W., Shimizu, S., Yoshikawa, S., Ho, K.: Satellite constellation pattern optimization for complex regional coverage. J. Spacecr. Rockets 57, 1309–1327 (2020)

    Google Scholar 

  55. Hitomi, N., Selva, D.: Constellation optimization using an evolutionary algorithm with a variable-length chromosome. In: 2018 IEEE Aerospace Conference, pp. 1–12. IEEE (2018)

  56. Mendivil, F., Shonkwiler, R.: Annealing a genetic algorithm for constrained optimization. J. Optim. Theory Appl. 147, 395–410 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Olsen, C.D., Fowler, W.T.: Use of a genetic algorithm to assess relative motion in highly elliptic orbits. J. Astronaut. Sci. 55, 293–309 (2007)

    Google Scholar 

  58. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp. 1942–1948. Citeseer (1995)

  59. Yang, B., Cheng, L.: Study of a new global optimization algorithm based on the standard PSO. J. Optim. Theory Appl. 158, 935–944 (2013)

    MathSciNet  MATH  Google Scholar 

  60. Ding, H., Gu, X.: Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem. Comput. Oper. Res. 121, 104951 (2020)

    MathSciNet  MATH  Google Scholar 

  61. Karimkashi, S., Kishk, A.A.: Invasive weed optimization and its features in electromagnetics. IEEE Trans. Antennas Propag. 58, 1269–1278 (2010)

    Google Scholar 

  62. Hajimirsadeghi, H., Lucas, C.: A hybrid IWO/PSO algorithm for fast and global optimization. In: IEEE EUROCON 2009, pp. 1964–1971. IEEE (2009)

  63. Abbasali, E., Kosari, A., Bakhtiari, M.: Effects of oblateness of the primaries on natural periodic orbit-attitude behaviour of satellites in three body problem. Adv. Space Res. 68(11), 4379–4397 (2021)

    Google Scholar 

  64. Mallahzadeh, A.R., Es’haghi, S., Alipour, A.: Design of an E-shaped MIMO antenna using IWO algorithm for wireless application at 5.8 GHz. Prog. Electromagn. Res. 90, 187–203 (2009)

    Google Scholar 

  65. Mesgari, H., Samavati, F.C., Moosavian, S.A.A.: Finding the best grasping point in object manipulation tasks—a comparison between GA and PSO methods. In: ICINCO (2), pp. 199–204 (2011)

  66. Banaszek, M., Tesch, K.: Blade shape optimisation for rotor-stator interaction in Kaplan turbine. In: 2nd International Conference on Engineering Optimization (EngOpt2010), Lisboa, Portugal (2010)

  67. Bakhtiari, M., Daneshjou, K., Abbasali, E.: A new approach to derive a formation flying model in the presence of a perturbing body in inclined elliptical orbit: relative hovering analysis. Astrophys. Space Sci. (2017)

  68. Bakhtiari, M., Daneshjou, K., Mohammadi-Dehabadi, A.A.: The effects of parking orbit elements on designing of on-orbit servicing missions. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233, 793–810 (2019)

    Google Scholar 

  69. Kim, Y.H., Spencer, D.B.: Optimal spacecraft rendezvous using genetic algorithms. J. Spacecr. Rockets 39, 859–865 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Bakhtiari.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtiari, M., Abbasali, E. & Daneshjoo, K. Minimum Cost Perturbed Multi-impulsive Maneuver Methodology to Accomplish an Optimal Deployment Scheduling for a Satellite Constellation. J Astronaut Sci 70, 18 (2023). https://doi.org/10.1007/s40295-023-00381-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00381-z

Keywords

Navigation