Skip to main content
Log in

High Order Nonlinear Least-Squares for Satellite Pose Estimation

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper introduces a high-order nonlinear least-squares method for solving six-degree-of-freedom (6-DOF) navigation of satellite maneuvers. The approach involves developing first through fourth-order Taylor series models, which provide the necessary conditions that are iteratively adjusted to recover the unknown roots for reducing the errors arising from fitting models to a given set of observations. An initial guess is provided for the unknown parameters in the system, developing a correction vector using Taylor expansion, and then manipulating the necessary conditions to provide the least-squares algorithm. Computational differentiation (CD) tools generate the Taylor expansion partial derivative models. This paper presents an experimental work conducted using a 6-DOF platform to demonstrate the performance of the developed high-order nonlinear least-squares navigation method. An initial calibration of the sensing systems is performed in an operationally relevant ground-based environment. The experiments demonstrate that accelerated convergence is achieved for the second-, third-, and fourth-order expansions with various initial guess conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abdel-Aziz, Y.I., Karara, H.M., Hauck, M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Photogram. Eng. Remote Sensing 81(2), 103–107 (2015)

    Article  Google Scholar 

  2. Alhulayil, M.M.: High orders computational techniques applied to space dynamics. PhD thesis, Khalifa University (2018)

  3. Alhulayil, M., Bani Younes, A., Turner, J.D.: Satellite attitude estimation in a novel operational environment. In: 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4. IEEE (2016)

  4. Bani Younes, A., Mortari, D.: Attitude error kinematics: applications in control. In: Proceedings of the 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, USA, pp. 14–18 (2016)

  5. Bani Younes, A., Mortari, D.: Attitude error kinematics: applications in estimation. In: Proceedings of the 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, USA, AAS 16-258 (2016)

  6. Bani Younes, A., Mortari, D.: Derivation of all attitude error governing equations for attitude filtering and control. Sensors 19(21), 4682 (2019)

    Article  Google Scholar 

  7. Bani Younes, A., Turner, J.: Generalized algorithms for least squares optimization for nonlinear observation models and Newton’s method. In: Astrodynamics Specialist Conference AAS, pp. 12–626 (2012)

  8. Bani Younes, A., Turner, J.: Feedback control sensitivity calculations using computational differentiation. In: ASME International Mechanical Engineering Congress and Exposition, vol. 57403, p. V04BT04A017. American Society of Mechanical Engineers, New York (2015)

  9. Bani Younes, A., Turner, J.: System uncertainty propagation using automatic differentiation. In: ASME International Mechanical Engineering Congress and Exposition, vol. 57397, p. V04AT04A058. American Society of Mechanical Engineers, New York (2015)

  10. Bani Younes, A., Turner, J.: Derivative enhanced optimal feedback control using computational differentiation. Int. J. Appl. Exp. Math. 1, 112 (2016)

    Google Scholar 

  11. Bani Younes, A., Turner, J.: High order state transition tensors of perturbed orbital motion using computational differentiation. In: Proceedings of the 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, USA, AAS 16-342 (2016)

  12. Bani Younes, A., Turner, J.: Semi-analytic probability density function for system uncertainty. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. (2016). https://doi.org/10.2514/1.29106

  13. Bani Younes, A., Turner, J.: Efficient uncertainty propagation of perturbed satellite motion. In: 27th AAS/AIAA Space Flight Mechanics Meeting (2017)

  14. Bani Younes, A., Turner, J., Majji, M., Junkins, J.: An investigation of state feedback gain sensitivity calculations. In: AIAA/AAS Astrodynamics Specialist Conference, p. 8274 (2010)

  15. Bani Younes, A., Mortari, D., Turner, J.D., Junkins, J.L.: Attitude error kinematics. J. Guid. Control Dyn. 37(1), 330–336 (2014)

    Article  Google Scholar 

  16. Bellman, R.: Perturbation Techniques in Mathematics, Engineering & Physics. Dover Publ. Incorporated, Mineola (1972)

    MATH  Google Scholar 

  17. Bischof, C., Carle, A., Corliss, G., Griewank, A., Hovland, P.: Generating Derivative Codes from Fortran Programs. Sci. Program. 1(1), 11–29 (1992)

  18. Bischof, C., Khademi, P., Mauer, A., Hovland, P., Carle, A.: Adifor 2.0 Users Guide (Revision B). Tech. Rep. Argonne National Laboratory (ANL), Argonne (1995)

  19. Bouguet, J.Y.: Camera calibration toolbox for Matlab. Tech. Rep. Computational Vision at the California Institute of Technology (2011)

  20. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. Chapman and Hall/CRC, Boca Raton (2004)

    Book  MATH  Google Scholar 

  21. Eberhard, P., Bischof, C.: Automatic differentiation of numerical integration algorithms. Math. Comput. 68(226), 717–731 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gauss, C.F.: Theoria motus corporum coelestium in sectionibus conicis solem ambientium, vol. 7. FA Perthes, London (1877)

    MATH  Google Scholar 

  23. Griewank, A., et al.: On automatic differentiation. Math. Program. Rec. Dev. Appl. 6(6), 83–107 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Griffith, D.T.: New Methods for Estimation, Modeling and Validation of Dynamical Systems Using Automatic Differentiation. Texas A &M University, College Station (2004)

    Google Scholar 

  25. Griffith, D.T., Turner, J.D., Junkins, J.L.: Automatic generation and integration of equations of motion for flexible multibody dynamical systems. J. Astronaut. Sci. 53(3), 251–279 (2005)

    Article  MathSciNet  Google Scholar 

  26. Hernandez, K., Elgohary, T.A., Turner, J.D., Junkins, J.L.: A novel analytic continuation power series solution for the perturbed two-body problem. Celest. Mech. Dyn. Astron. 131, 1–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, S., Xu, C., Xie, M.: A robust o (n) solution to the perspective-n-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1444–1450 (2012)

    Article  Google Scholar 

  28. Liao, S.J.: An approximate solution technique not depending on small parameters: a special example. Int. J. Non-Linear Mech. 30(3), 371–380 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nie, Y., Faqir, O., Kerrigan, E. C.: ICLOCS2: Try this optimal control problem solver before you try the rest. In: 2018 UKACC 12th International Conference on Control (CONTROL), pp. 336–336. IEEE (2018)

  31. Patterson, M.A., Rao, A.V.: GPOPS-II: a Matlab software for solving multiple-phase optimal control problems using HP-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. (TOMS) 41(1), 1–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. AIAA Education Series, Reston (2003)

  33. Tasif, T.H., Elgohary, T.A.: An adaptive analytic continuation method for computing the perturbed two-body problem state transition matrix. J. Astronaut. Sci. 67, 1412–1444 (2020)

    Article  Google Scholar 

  34. Tasif, T.H., Hippelheuser, J.E., Elgohary, T.A.: Analytic continuation extended kalman filter framework for perturbed orbit estimation using a network of space-based observers with angles-only measurements. Astrodynamics 6(2), 161–187 (2022)

    Article  Google Scholar 

  35. Thomas, J.P., Dowell, E.H., Hall, K.C.: Using automatic differentiation to create a nonlinear reduced-order-model aerodynamic solver. AIAA J. 48(1), 19–24 (2010)

    Article  Google Scholar 

  36. Turner, J., Bani Younes, A.: On the integration of m-dimensional expectation operators. In: AIAA Houston Annual Technical Symposium, Gilruth Center, NASA/JSC (2012)

  37. Turner, J.D.: Automated generation of high-order partial derivative models. AIAA J. 41(8), 1590–1598 (2003)

    Article  Google Scholar 

  38. Turner, J.D.: Generalized gradient search and Newtons methods for multilinear algebra root-solving and optimization applications. Adv. Astronaut. Sci. 115, 55–77 (2003)

    Google Scholar 

  39. Weinstein, M.J., Rao, A.V.: A source transformation via operator overloading method for the automatic differentiation of mathematical functions in Matlab. ACM Trans. Math. Softw. (TOMS) 42(2), 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  40. Weinstein, M.J., Patterson, M.A., Rao, A.V.: Utilizing the algorithmic differentiation package adigator for solving optimal control problems using direct collocation. In: AIAA Guidance, Navigation, and Control Conference, p. 1085 (2015)

  41. Wengert, R.E.: A simple automatic derivative evaluation program. Commun. ACM 7(8), 463–464 (1964)

    Article  MATH  Google Scholar 

  42. Wilkins, R.: Investigation of a new analytical method for numerical derivative evaluation. Commun. ACM 7(8), 465–471 (1964)

    Article  MATH  Google Scholar 

  43. Yuan, Y., Thomson, D., Anderson, D.: Application of automatic differentiation for tilt-rotor aircraft flight dynamics analysis. J. of Aircraft 57(5), 985–990 (2020)

    Article  Google Scholar 

  44. Zhao, Q., Caiafa, C.F., Mandic, D.P., Chao, Z.C., Nagasaka, Y., Fujii, N., Zhang, L., Cichocki, A.: Higher order partial least squares (HOPLS): a generalized multilinear regression method. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1660–1673 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Bani Younes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bani Younes, A., Alhulayil, M., Turner, J.D. et al. High Order Nonlinear Least-Squares for Satellite Pose Estimation. J Astronaut Sci 70, 15 (2023). https://doi.org/10.1007/s40295-023-00378-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00378-8

Keywords

Navigation