Skip to main content
Log in

Perturbed Restricted Problem of Three Bodies with Elongated Smaller Primary

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper presents the study of the perturbed restricted problem of three bodies with an elongated smaller primary and an oblate radiating bigger primary. The albedo effect and small perturbations in the Coriolis and centrifugal forces have also been considered. The equilibrium points of the system and their linear stability are elaborated, and the significant variation in equilibrium points and their stability is observed. It is observed that the critical value of mass parameter \(\mu _c\) increases due to all the considered parameters except oblateness and segment-length. It is found that the critical mass parameter \(\mu _c\) decreases due to the effect of segment-length and oblateness. In addition, periodic orbits are constructed in the neighbourhood of equilibrium points. The effects of perturbing parameters in the periodic orbits are studied. The Poincaré Surface Section is constructed and then used to produce periodic orbits associated with its resonance. Considerable impact on the zero velocity curves and the periodic orbits are observed near the elongated primary. These effects decrease when the infinitesimal particle moves farther away from the elongated primary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abouelmagd, E.I., Asiri, H., Sharaf, M.: The effect of oblateness in the perturbed restricted three-body problem. Meccanica 48(10), 2479–2490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anselmo, L., Farinella, P., Milani, A., Nobili, A.M.: Effects of the earth-reflected sunlight on the orbit of the Lageos satellite. Astron. Astrophys. 117, 3–8 (1983)

    Google Scholar 

  3. Antoniadou, K.I., Libert, A.S.: Origin and continuation of 3/2, 5/2, 3/1, 4/1 and 5/1 resonant periodic orbits in the circular and elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 130(6), 1–30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arredondo, J.A., Guo, J., Stoica, C., Tamayo, C.: On the restricted three body problem with oblate primaries. Astrophys. Space Sci. 341(2), 315–322 (2012)

    Article  MATH  Google Scholar 

  5. Bhatnagar, K., Hallan, P.: Effect of perturbations in Coriolis and centrifugal forces on the stability of libration points in the restricted problem. Celest. Mech. 18(2), 105–112 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burgos-García, J., Delgado, J.: Periodic orbits in the restricted four-body problem with two equal masses. Astrophys. Space Sci. 345(2), 247–263 (2013)

    Article  MATH  Google Scholar 

  7. Del Genio, A., Way, M., Amundsen, D., Sohl, L., Fujii, Y., Ebihara, Y., Kiang, N., Chandler, M., Aleinov, I., Kelley, M.: Equilibrium temperatures and albedos of habitable earth-like planets in a coupled atmosphere-ocean GCM. In: Habitable Worlds 2017: A System Science Workshop, GSFC-E-DAA-TN51079 (2017)

  8. Douskos, C., Markellos, V.: Out-of-plane equilibrium points in the restricted three-body problem with oblateness. Astron. Astrophys. 446(1), 357–360 (2006)

    Article  Google Scholar 

  9. Ghazy, M.A.: Analytic Construction of Periodic Orbits in the Restricted Three-Body Problem. Old Dominion University, Norfolk (2010)

    Google Scholar 

  10. Grøtte, M.E., Holzinger, M.J.: Solar sail equilibria with albedo radiation pressure in the circular restricted three-body problem. Adv. Space Res. 59(4), 1112–1127 (2017)

    Article  Google Scholar 

  11. Harris, M., Lyle, R.: Spacecraft radiation torque. In: NASA Space Vehicle Design Criteria, vol. SP-8027 (1969)

  12. Idrisi, M.J.: A study of libration points in modified CR3BP under albedo effect when smaller primary is an ellipsoid. J. Astronaut. Sci. 64(4), 379–398 (2017)

    Article  Google Scholar 

  13. Idrisi, M.J., Ullah, M.S.: Non-collinear libration points in ER3BP with albedo effect and oblateness. J. Astrophys. Astron. 39(3), 1–10 (2018)

    Article  Google Scholar 

  14. Idrisi, M.J., Ullah, M.S.: A study of albedo effects on libration points in the elliptic restricted three-body problem. J. Astronaut. Sci. 67(3), 863–879 (2020)

    Article  Google Scholar 

  15. Jain, R., Sinha, D.: Stability and regions of motion in the restricted three-body problem when both the primaries are finite straight segments. Astrophys. Space Sci. 351(1), 87–100 (2014)

    Article  Google Scholar 

  16. Kaur, B., Kumar, D., Chauhan, S.: Effect of perturbations in the Coriolis and centrifugal forces in the Robe-finite straight segment model with arbitrary density parameter. Astron. Nachr. 341(1), 32–43 (2020)

    Article  Google Scholar 

  17. Kishor, R., Kushvah, B.S.: Linear stability and resonances in the generalized photogravitational chermnykh-like problem with a disc. Mon. Not. R. Astron. Soc. 436(2), 1741–1749 (2013)

    Article  Google Scholar 

  18. Kishor, R., Kushvah, B.S.: Periodic orbits in the generalized photogravitational Chermnykh-like problem with power-law profile. Astrophys. Space Sci. 344(2), 333–346 (2013)

    Article  MATH  Google Scholar 

  19. Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem. Celest. Mech. Dyn. Astron. 112(1), 47–74 (2012)

    Article  MATH  Google Scholar 

  20. Kumar, D., Kaur, B., Chauhan, S., Kumar, V.: Robe’s restricted three-body problem when one of the primaries is a finite straight segment. Int. J. Non-Linear Mech. 109, 182–188 (2019)

    Article  Google Scholar 

  21. Kumar, D., Aggarwal, R., Kaur, B.: An insight on the restricted problem of 2+2 bodies with straight segment. Astron. Nachr. 341(6–7), 669–683 (2020)

    Article  Google Scholar 

  22. Kumar, D., Aggarwal, R., Kaur, B.: On the perturbed restricted 2+2 body problem when the primaries are non-spherical. Few-Body Syst. 62(4), 1–18 (2021)

    Article  Google Scholar 

  23. Kushvah, B.S.: Linear stability of equilibrium points in the generalized photogravitational Chermnykh’s problem. Astrophys. Space Sci. 318(1), 41–50 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lara, M.: On perturbation solutions in the restricted three-body problem dynamics. Acta Astronautica 195, 596–604 (2022)

  25. Mahato, G., Kushvah, B.S., Pal, A.K., Verma, R.K.: Dynamics of the restricted three-body problem having elongated smaller primary with disk-like structure. Adv. Space Res. 69(9), 3490–3501 (2022)

  26. Markellos, V., Papadakis, K., Perdios, E.: Non-linear stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness. Astrophys. Space Sci. 245(1), 157–164 (1996)

    Article  MATH  Google Scholar 

  27. McCuskey, S.W.: Introduction to celestial mechanics. Addison-Wesley, Reading (1963)

  28. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  29. Pal, A.K., Kushvah, B.S.: Geometry of halo and Lissajous orbits in the circular restricted three-body problem with drag forces. Mon. Not. R. Astron. Soc. 446(1), 959–972 (2015)

    Article  Google Scholar 

  30. Pathak, N., Thomas, V., Abouelmagd, E.I.: The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits. Discret. Contin. Dyn. Syst. S 12(4 &5), 849 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Riaguas, A., Elipe, A., López-Moratalla, T.: Non-linear stability of the equilibria in the gravity field of a finite straight segment. Celest. Mech. Dyn. Astron. 81(3), 235–248 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rocco, E.M.: Evaluation of the terrestrial albedo applied to some scientific missions. Space Sci. Rev. 151(1–3), 135–147 (2010)

    Google Scholar 

  33. Ruth, Y.S., Sharma, R.: Periodic orbits in the photogravitational elliptic restricted three-body problem. Adv. Astrophys. 3, 154–170 (2018)

    Article  Google Scholar 

  34. Simmons, J., McDonald, A., Brown, J.: The restricted 3-body problem with radiation pressure. Celest. Mech. 35(2), 145–187 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Szebehely, V.: Theory of orbits: the restricted three body problem. Academic Press, New York and London (1967)

  36. Yousuf, S., Kishor, R.: Effects of the albedo and disc on the zero velocity curves and linear stability of equilibrium points in the generalized restricted three-body problem. Mon. Not. R. Astron. Soc. 488(2), 1894–1907 (2019)

    Article  Google Scholar 

  37. Zotos, E.E.: Investigating the Newton-Raphson basins of attraction in the restricted three-body problem with modified Newtonian gravity. J. Appl. Math. Comput. 56(1), 53–71 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The third author is financially supported by the Council of Scientific and Industrial Research (CSIR), Govt. of India (File No. 09/085(0126)/2019-EMR-1). We are thankful to DST(SERB) Government of India (Project No.-DST(SERB)/(163)/2016-2017/506/AM) for using the computation facility. The fourth author is supported by Enhanced Seed Grant through Endowment Fund Ref: EF/2021- 22/QE04-07 from Manipal University Jaipur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govind Mahato.

Ethics declarations

Conflict of interest

The authors state that the publishing of this paper doesn’t include any conflict of interests.

A. Appendix

A. Appendix

1.1 A. 1. Polynomials of Collinear Equilibrium Points

$$\begin{aligned}{} & {} \mathbf{f_{L_{1}}(x)} =[3 A (1 - \mu ) q - 3 A d^2 (1 - \mu ) q - 6 A (1 - \mu ) \mu q + 2 (1 - \mu ) \mu ^2 q + 3 A (1 - \mu ) \mu ^2 q - 2 d^2 (1 - \mu ) \mu ^2 q \\{} & {} - 4 (1 - \mu ) \mu ^3 q + 2 (1 - \mu )\mu ^4 q + 2 \mu ^5 Q] \\{} & {} + [2 \mu ^4\delta _2 n^2 - 2 d^2 \mu ^4\delta _2 n^2 - 4 \mu ^5\delta _2n^2 + 2 \mu ^6 \delta _2n^2 + 6 A (1 - \mu ) q - 4 (1 - \mu ) \mu q - 6 A (1 - \mu ) \mu q \\{} & {} + 4 d^2 (1 - \mu ) \mu q + 12 (1 - \mu ) \mu ^2 q - 8 (1 - \mu ) \mu ^3 q - 8 \mu ^4 Q]\textbf{x} \\{} & {} + [-8 \mu ^3 \delta _2\delta _2n^2 + 8 d^2 \mu ^3\delta _2 n^2 + 20 \mu ^4 \delta _2n^2 - 12 \mu ^5 \delta _2n^2 + 2 (1 - \mu ) q + 3 A (1 - \mu ) q - 2 d^2 (1 - \mu ) q \\{} & {} - 12 (1 - \mu ) \mu q + 12 (1 - \mu ) \mu ^2 q + 12 \mu ^3 Q] \mathbf{x^2} \\{} & {} + [12 \mu ^2 \delta _2n^2 - 12 d^2 \mu ^2 \delta _2n^2 - 40 \mu ^3 \delta _2n^2 + 30 \mu ^4 \delta _2n^2 + 4 (1 - \mu ) q - 8 (1 - \mu ) \mu q - 8 \mu ^2 Q] \mathbf{x^3} \\{} & {} + [-8 \mu \delta _2n^2 + 8 d^2 \mu \delta _2n^2 + 40 \mu ^2 \delta _2n^2 - 40 \mu ^3 \delta _2n^2 + 2 (1 - \mu ) q + 2 \mu Q] \mathbf{x^4} \\{} & {} + [2\delta _2 n^2 - 2 d^2 \delta _2n^2 - 20 \mu \delta _2n^2 + 30 \mu ^2 \delta _2n^2] \mathbf{x^5} + [4 \delta _2n^2 - 12 \mu n^2] \mathbf{x^6} + 2 \delta _2n^2 \mathbf{x^7};\\ \mathbf{f_{L_{2}}(x)}= & {} [3 A (1 - \mu ) q - 3 A d^2 (1 - \mu ) q - 6 A (1 - \mu ) \mu q + 2 (1 - \mu ) \mu ^2 q + 3 A (1 - \mu ) \mu ^2 q - 2 d^2 (1 - \mu )\mu ^2 q\\{} & {} - 4 (1 - \mu ) \mu ^3 q + 2 (1 - \mu ) \mu ^4 q - 2 \mu ^5 Q] \\{} & {} + [2 \mu ^4 \delta _2n^2 - 2 d^2 \mu ^4 \delta _2n^2 - 4 \mu ^5 \delta _2n^2 + 2 \mu ^6 \delta _2n^2 + 6 A (1 - \mu ) q - 4 (1 - \mu ) \mu q - 6 A (1 -\mu ) \mu q \\{} & {} + 4 d^2 (1 - \mu ) \mu q + 12 (1 - \mu ) \mu ^2 q - 8 (1 - \mu ) \mu ^3 q + 8 \mu ^4 Q] \textbf{x} \\{} & {} + [-8 \mu ^3 \delta _2n^2 + 8 d^2 \mu ^3 \delta _2n^2 + 20 \mu ^4 \delta _2n^2 - 12 \mu ^5 \delta _2n^2 + 2 (1 - \mu ) q + 3 A (1 - \mu ) q - 2 d^2 (1 - \mu ) q - \\{} & {} 12 (1 - \mu ) \mu q + 12 (1 - \mu ) \mu ^2 q - 12 \mu ^3 Q] \mathbf{x^2} \\{} & {} + [12 \mu ^2 n^2 - 12 d^2 \mu ^2 \delta _2n^2 - 40 \mu ^3 n^2 + 30 \mu ^4 \delta _2n^2 + 4 (1 - \mu ) q - 8 (1 - \mu ) \mu q + 8 \mu ^2 Q] \mathbf{x^3}\\{} & {} + [-8 \mu \delta _2n^2 + 8 d^2 \mu \delta _2 n^2 + 40 \mu ^2 \delta _2n^2 - 40 \mu ^3 \delta _2n^2 + 2 (1 - \mu ) q - 2 \mu Q] \mathbf{x^4} \\{} & {} + [2 \delta _2n^2 - 2 d^2 \delta _2n^2 - 20 \mu \delta _2n^2 + 30 \mu ^2 \delta _2n^2] \mathbf{x^5} + [4 \delta _2n^2 - 12 \mu \delta _2n^2] \mathbf{x^6} + 2 \delta _2n^2 \mathbf{x^7};\\{} & {} \mathbf{f_{L_{3}}(x)} = [-3 A (1 - \mu ) q + 3 A d^2 (1 - \mu ) q + 6 A (1 - \mu ) \mu q - 2 (1 - \mu ) \mu ^2 q - 3 A (1 - \mu ) \mu ^2 q + 2 d^2 (1 - \mu ) \mu ^2 q \\{} & {} + 4 (1 - \mu ) \mu ^3 q - 2 (1 - \mu ) \mu ^4 q - 2 \mu ^5 Q] \\{} & {} + [2 \mu ^4 \delta _2n^2 - 2 d^2 \mu ^4 \delta _2n^2 - 4 \mu ^5 \delta _2n^2 + 2 \mu ^6 \delta _2n^2 - 6 A (1 - \mu ) q + 4 (1 - \mu ) \mu q + 6 A (1 - \mu ) \mu q \\{} & {} - 4 d^2 (1 - \mu ) \mu q - 12 (1 - \mu ) \mu ^2 q + 8 (1 - \mu ) \mu ^3 q + 8 \mu ^4 Q]\textbf{x} \\{} & {} + [-8 \mu ^3 \delta _2n^2 + 8 d^2 \mu ^3 \delta _2n^2 + 20 \mu ^4 \delta _2n^2 - 12 \mu ^5 \delta _2n^2 - 2 (1 - \mu ) q - 3 A (1 - \mu ) q + 2 d^2 (1 - \mu ) q \\{} & {} + 12 (1 - \mu ) \mu q - 12 (1 - \mu ) \mu ^2 q - 12 \mu ^3 Q] \mathbf{x^2} \\{} & {} + [12 \mu ^2 \delta _2n^2 - 12 d^2 \mu ^2 \delta _2n^2 - 40 \mu ^3 \delta _2n^2 + 30 \mu ^4 \delta _2n^2 - 4 (1 - \mu ) q + 8 (1 - \mu ) \mu q + 8 \mu ^2 Q] \mathbf{x^3} \\{} & {} + [-8 \mu \delta _2n^2 + 8 d^2 \mu \delta _2n^2 + 40 \mu ^2 \delta _2n^2 - 40 \mu ^3 \delta _2n^2 - 2 (1 - \mu ) q - 2 \mu Q] \mathbf{x^4} \\{} & {} + [2 \delta _2n^2 - 2 d^2 \delta _2n^2 - 20 \mu \delta _2n^2 + 30 \mu ^2 \delta _2n^2] \mathbf{x^5} + [4 \delta _2n^2 - 12 \mu \delta _2n^2] \mathbf{x^6} + 2 \delta _2n^2 \mathbf{x^7}. \end{aligned}$$

1.2 A. 2. Terms Used for Non-collinear Equilibrium Points (\(\theta _{1,2}\))

$$\begin{aligned}{} & {} \phi _1 = 4(2\delta _2n^2 + (2 + 3A)(-1 + \mu )q)^2 + \mu (2(8 - 24\mu + d^2(-19 + 5\mu ))\delta _2n^2 -(2 + 3A)(-8+ 19d^2) \times \\{} & {} (-1 + \mu )q)Q + 4(4 + d^2)\mu ^2Q^2; \\ \phi _2= & {} 16\delta _2^2n^4 - 8(-1 + \mu )(-4 + 6\mu + 3A(-2 + 5 \mu ))\delta _2n^2q + 4(2 + 3A)^2(-1 + \mu )^2q^2 \\{} & {} + 4\mu (-8 + d^2 (-7 + 10 \mu ))\delta _2n^2Q - (-8(2 + 9A) + (46 + 87A)d^2)(-1 + \mu )\mu q Q + 4 (4 - 3 d^2) \mu ^2Q^2;\\ \psi= & {} 3(4(2 + 5A)(-1 + \mu )q(2\delta _2n^2 + (2 + 3A)(-1 + \mu )q) - \mu (2(8 + 5d^2)\delta _2n^2 + (-8(2 + 7A) \\{} & {} + (46 + 105A)d^2)(-1 + \mu )q)Q - 4(-4 + d^2) \mu ^2 Q^2). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R.K., Kushvah, B.S., Mahato, G. et al. Perturbed Restricted Problem of Three Bodies with Elongated Smaller Primary. J Astronaut Sci 70, 13 (2023). https://doi.org/10.1007/s40295-023-00374-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00374-y

Keywords

Navigation