Skip to main content
Log in

Orbital Dynamics, Chaotic Orbits and Jacobi Elliptic Functions

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Bertrand theorem’s states that, among central-force potentials with bound orbits, there are only two types of central-force scalar potentials with the property that all bound orbits are also closed orbits: the inverse-square law and Hooke’s law. These solutions are considered basic examples in classical mechanics since they help in understanding the regular and predictable motion of bodies and superintegrable dynamical systems. However, there are strong beliefs that other potentials may arise in dynamical systems which are not predicted by Bertrand’s theorem. Besides, several dynamical systems such as the solar system are characterized by chaotic and unbounded orbits which are not predicted by Bertrand’s theorem. In this work, we prove an extension of Bertrand’s theorem by means of non-standard Lagrangians and show the existence of a family of solutions for chaotic unstable periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The authors confirm the absence of sharing data.

References

  1. Arnold, V.I.: Mathematical methods of classical mechanics. Springer, New York (1978)

    Book  Google Scholar 

  2. Alekseev, A.I., Arbuzov, B.A.: Classical Yang-Mills field theory with non-standard Lagrangians. Theor. Math. Phys. 59, 372–378 (1984)

    Article  Google Scholar 

  3. Alekseev, A.I., Vshivtsev, A.S., Tatarintsev, A.V.: Classical non-abelian solutions for non-standard Lagrangians. Theor. Math. Phys. 77, 1189–1197 (1988)

    Article  Google Scholar 

  4. Carinena, J.F., Ranada, M.F., Santander, M.: Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carinena, J.F., Nunez, J.F.: Geometric approach to dynamics obtained by deformation of Lagrangians. Nonlinear Dyn. 83, 457–461 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carinena, J.F., Nunez, J.F.: Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians. Nonlinear Dyn. 86, 1285–1291 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carinera, J.F.: Non-standard Hamiltonian structures of the Lienard equation and contact geometry. Int. J. Geom. Meth. Mod. Phys. 16, 1940001 (2019)

    Article  Google Scholar 

  8. Cieslinski, J.L., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A: Math. Gen. 43, 175205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A: Math. Theor. 41, 055205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Musielak, Z.E., Roy, D., Swift, K.D.: Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients. Chaos Solitons Fractals 38, 894–902 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Musielak, Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 42, 2645–2652 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Musielak, Z.E., Davachi, N., Rosario-Franco, M.: Lagrangians, gauge transformations and Lie groups for semigroup of second-order differential equations. J. Appl. Math. (2020). https://doi.org/10.1155/2020/3170130

    Article  MATH  Google Scholar 

  13. Musielak, Z.E., Davachi, N., Rosario-Franco, M.: Special functions of mathematical physics: a unified Lagrangian formalism. Mathematics 8, 379 (2020)

    Article  Google Scholar 

  14. El-Nabulsi, R.A.: Nonlinear dynamics with nonstandard Lagrangians. Qual. Theor. Dyn. Syst. 12, 273–291 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. El-Nabulsi, R.A., Soulati, T.A., Rezazadeh, H.: Non-standard complex Lagrangian dynamics. J. Adv. Res. Dyn. Cont. Syst. 5, 50–62 (2013)

    MathSciNet  Google Scholar 

  16. El-Nabulsi, R.A.: Non-standard fractional Lagrangians. Nonlinear Dyn. 74, 381–394 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. El-Nabulsi, R.A.: Fractional oscillators from non-standard Lagrangians with time-dependent fractional oscillators. Comp. Appl. Math. 33, 163–179 (2014)

    Article  MATH  Google Scholar 

  18. El-Nabulsi, R.A.: A generalized nonlinear oscillator from non-standard degenerate Lagrangians and its consequent Hamiltonian formalism. Proc. Natl Acad. Sci. India Sect. A: Phys. Sci. 84, 563–569 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. El-Nabulsi, R.A.: Fractional variational approach with non-standard power-law degenerate Lagrangians and a generalized derivative operator. Tbilisi Math. J. 9, 279–293 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. El-Nabulsi, R.A.: Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional. Ind. J. Phys. 87, 465–470 (2013)

    Article  Google Scholar 

  21. El-Nabulsi, R.A.: Quantum field theory from an exponential action functional. Ind. J. Phys. 87, 379–383 (2013)

    Article  Google Scholar 

  22. El-Nabulsi, R.A.: Electrodynamics of relativistic particles through non-standard Lagrangians. J. Atom. Mol. Sci. 5, 268–278 (2014)

    MathSciNet  Google Scholar 

  23. El-Nabulsi, R.A.: Non-standard power-law Lagrangians in classical and quantum dynamics. Appl. Math. Lett. 43, 120–127 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. El-Nabulsi, R.A.: Non-standard Lagrangians in quantum mechanics and their relationship with attosecond laser pulse formalism. Lasers Eng. 40, 347–374 (2018)

    Google Scholar 

  25. El-Nabulsi, R.A.: Fractional variational symmetries of Lagrangians, the fractional Galilean transformation and the modified Schrödinger equation. Nonlinear Dyn. 81, 939–948 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Supanyo, S., Tanasittikosol, M., Yoo-Kong, S.: Natural TeV cutoff of the Higgs field from a multiplicative Lagrangian. Phys. Rev. D 106, 035020 (2022)

    Article  MathSciNet  Google Scholar 

  27. El-Nabulsi, R.A.: Gravitational field as a pressure force from logarithmic Lagrangians and non-standard Hamiltonians: the case of stellar Halo of Milky Way. Comm. Theor. Phys. 69, 233 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. El-Nabulsi, R.A.: Modified plasma-fluids equations from non-standard Lagrangians with application to nuclear fusion. Canad. J. Phys. 93, 55–67 (2014)

    Article  Google Scholar 

  29. El-Nabulsi, R.A.: Non-standard Lagrangians in rotational dynamics and the modified Navier–Stokes equation. Nonlinear Dyn. 79, 2055–2068 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. El-Nabulsi, R.A.: The Hamilton–Jacobi analysis of powers of singular Lagrangians: a connection between the modified Schrödinger and the Navier–Stokes equations. Qual. Theor. Dyn. Syst. 17, 583–608 (2018)

    Article  MATH  Google Scholar 

  31. El-Nabulsi, R.A.: Non-standard magnetohydrodynamics equations and their implications in sunspots. Proc. R. Soc. A 476, 20200190 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. El-Nabulsi, R.A.: Non-standard non-local-in-time Lagrangians in classical mechanics. Qual. Theor. Dyn. Syst. 13, 149–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. El-Nabulsi, R.A., Golmankhaneh, A.K.: Nonstandard and fractal electrodynamics in Finsler-Randers space. Int. J. Geom. Meth. Mod. Phys. 19, 2250080 (2022)

    Article  MathSciNet  Google Scholar 

  34. Segovia, A.L., Vestal, L.C., Musielak, Z.E.: Nonstandard null Lagrangians and gauge functions and dissipative forces in dynamics. Phys Lett. A453, 128457 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Das, Z. E. Musielak, New role of null Lagrangians in derivation of equations of motion for dynamical systems, arXiv: 2210.09105.

  36. Jin, S.X., Li, Y.M., Zhang, Y.: Noether symmetry and its inverse for dynamical systems with two kinds of nonstandard Lagrangians via quasi-coordinates. Ind. J. Phys. 96, 2437–2448 (2022)

    Article  Google Scholar 

  37. Jiang, J., Feng, Y., Xu, S.: Noether’s symmetries and its inverse for fractional logarithmic Lagrangian systems. J. Syst. Sci. Inform. 7, 90–98 (2019)

    Google Scholar 

  38. Saha, A., Talukdar, B.: Inverse variational problem for non-standard Lagrangians. Rep. Math. Phys. 73, 299–309 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Song, J., Zhang, Y.: Noether’s theorems for dynamical systems of two kinds of non-standard Hamiltonians. Acta Mech. 229, 285–297 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Y., Zhou, X.S.: Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dyn. 84, 1867–1976 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, X.S., Zhang, Y.: Routh method of reduction for dynamical systems with non-standard Lagrangians. Chin. Quart. Mech. 37, 15–21 (2016)

    Google Scholar 

  42. Zhang, Y., Wang, X.-P.: Mei Symmetry and invariants of quasi-fractional dynamical systems with non-standard Lagrangians. Symmetry 11, 1061 (2019)

    Article  Google Scholar 

  43. Bertrand, J.: Théorème relatif du mouvement d’un point attire vers un centre fixe. C. R. Acad. Sci. 77, 849–853 (1873)

    MATH  Google Scholar 

  44. Haider, M.: Bertrand’s Theorem. Karlstads Universitet, Department of Physics and Electrical engineering, Karlstad (2013)

    Google Scholar 

  45. Kozlov, V.V., Harin, A.: Kepler’s problem in constant curvature spaces. Celestial Mech. Dynam. Astron. 54, 393–399 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Quilantan, J.L.C., Del Rio-Correa, J.L., Medina, M.A.R.: Alternative proof of Bertrand’s theorem using a phase space approach. Rev. Mex. Fis. 42, 867–877 (1996)

    Google Scholar 

  47. Shi, R.-C., Mei, F.-X.: On a generalization of Bertrand’s theorem. Appl. Math. Mech. 14, 537–544 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zagryadskii, O.A., Kudryavtseva, E.A., Fedoseev, D.A.: A generalization of Bertrand’s theorem to surfaces of revolution. Sb. Math. 203, 39–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Grandati, Y., Berard, A., Menas, F.: Inverse problem and Bertrand’s theorem. Am. J. Phys. 76, 782–787 (2008)

    Article  Google Scholar 

  50. Nucci, M.C., Leach, P.G.L.: The Jacobi last multiplier and its applications in mechanics. Phys. Scr. 78, 065011 (2008)

    Article  MATH  Google Scholar 

  51. Nucci, M.C., Leach, P.G.L.: Jacobi’s last multiplier and Lagrangians for multidimensional systems. J. Math. Phys. 49, 073517 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Davachi, N., Musielak, Z.E.: Generalized non-standard Lagrangians. J. Undergrad. Rept. Phys. 29, 100004 (2019)

    Article  Google Scholar 

  53. Cveticanin, L.: Oscillator with strong quadratic damping force. Publ. Inst. Math.: Nouvelle Ser. 85(99), 119–130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. EL-Nabulsi, R.A., Anukool, W.: A new approach to nonlinear quartic oscillator. Arch. Appl. Mech. 92, 351–362 (2022)

    Article  Google Scholar 

  55. Byrd, P.F., Friedman, M.D.: Handbook of elliptic integrals for engineers and physicists. Springer, Heidelberg (1954)

    Book  MATH  Google Scholar 

  56. Caranicolas, N.D., Zotos, E.E.: Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits. Nonlinear Dyn. 69, 1795–1805 (2012)

    Article  MathSciNet  Google Scholar 

  57. Milne, S.C.: Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6, 1–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pilipchuk, V.N., Vakakis, A.F., Azeez, M.A.F.: Sensitive dependence on initial conditions of strongly nonlinear periodic orbits of the forced pendulum. Nonlinear Dyn. 16, 223–237 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  59. Dvorak, R., Freistetter, F.: Orbital Dynamics, Stability and Chaos in Planetary Systems. In: Dvorak, R., Freistetter, F., Kurths, J. (eds.) Chaos and stability in planetary systems. Lecture notes in physics 683. Springer, Berlin (2005)

    Chapter  Google Scholar 

  60. Kwiecinski, J.A., Kovacs, A., Krause, A.L., Planella, F.B., Van Gorder, R.A.: Chaotic dynamics in the planar gravitational many-body problem with rigid body rotations. Int. J. Bifurc. Chaos 28, 1830013 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Tarnopolski, M.: Rotation of an oblate satellite: chaos control. Astr. Astrophys. 606, A43 (2017)

    Article  Google Scholar 

  62. S. Marmi, Chaotic behaviour in the solar system, Asterisque 266, (2000), Seminaire Bourbaki, exp. 854, 113–136.

  63. Li, X., Liao, S.: More than six hundreds new families of Newtonian periodic planar collisionless three-body orbits. Sci. China-Phys. Mech. Astron. 60, 129511 (2017)

    Article  Google Scholar 

  64. Dmitrašinović, V., Hudomal, A., Shibayama, M., Sugita, A.: Linear stability of periodic three-body orbits with zero angular momentum and topological dependence of Kepler’s third law: a numerical test. J. Phys. A: Math. Theor. 51, 315101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. Suvakov, M., Dmitrašinović, V.: Three classes of Newtonian three-body planar periodic orbits. Phys. Rev. Lett. 110, 114301 (2013)

    Article  Google Scholar 

  66. A. Milani, Chaos in the Three Body Problem. In: A. E. Roy (Eds) Predictability, Stability, and Chaos in N-Body Dynamical Systems. NATO ASI Series, vol. 272 , Springer, Boston (1991).

  67. Igata, T.: Chaos in a generalized Euler’s three-body problem. Class. Quant. Grav. 38, 195009 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  68. Liao, S.: Chaotic motion of three-body problem: an origin of macroscopic randomness of the universe. Comm. Nonlin. Sci. Num. Simul. 19, 601–616 (2014)

    Article  Google Scholar 

  69. Ginat, Y.B., Perets, H.: Analytical, statistical approximate solution of dissipative and nondissipative binary-single stellar encounters. Phys. Rev. X 11, 031020 (2021)

    Google Scholar 

  70. Mogavero, F., Laskar, J.: The origin of chaos in the Solar System through computer algebra. Aston. Astrophys. 662, L3 (2022)

    Article  Google Scholar 

  71. Yurtserver, U.: Geometry of chaos in the two-center problem in general relativity. Phys. Rev. D 52, 3176 (1995)

    Article  Google Scholar 

  72. Laskar, J.: A numerical experiment on the chaotic behaviour of the Solar System. Nature 338, 237–238 (1989)

    Article  Google Scholar 

  73. Lecar, M., Franklin, F.A., Holman, M.J., Murray, N.W.: Chaos in the solar system. Annu. Rev. Astron. Astrophys. 39, 581–631 (2001)

    Article  Google Scholar 

  74. Laskar, J., Robutel, P.: The chaotic obliquity of Mars. Nature 361, 608–612 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted for the group of anonymous referees for their useful comments and valuable suggestions.

Funding

The authors would like to thank Chiang Mai University for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A., Anukool, W. Orbital Dynamics, Chaotic Orbits and Jacobi Elliptic Functions. J Astronaut Sci 70, 1 (2023). https://doi.org/10.1007/s40295-023-00367-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00367-x

Keywords

Mathematics Subject Classification

Navigation