Skip to main content
Log in

Intrinsic Fault Resistance for Nonlinear Filters with State-Dependent Probability of Detection

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The probability of detection can be thought of as the probability that a given measurement scan contains a valid, target-oriented return. In most systems, the detection probability is inherently a function of the state, which can make forming closed-form filtering solutions exceedingly difficult. Oftentimes, closed-form filters will either neglect the probability of detection outright, or in some cases may approximate it as state-independent. Both assumptions simplify calculations, yet bar the filter from extracting any state-information from the probability of detection. This work seeks to reevaluate current estimation practices by testing and comparing several probability of detection models of varying fidelity. This is done by proposing a filter update with intrinsic fault resistance capable of processing multiple sensor returns contained within a single measurement scan. Three different methods of detection probability modeling are described, which are subsequently used to form three distinct Gaussian mixture filters. To test the filters, Monte Carlo results are taken from two different simulations: the first a simple falling body tracking scenario, and the second a more complex orbit determination scenario. The results from both simulations indicate that including detection probabilities, even when modeled incorrectly, can increase filter robustness, and will improve estimate uncertainty if modeled as state-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. DART Mishap Investigation Board: Overview of the DART Mishap Investigation Results. Technical Report. NASA (2006). http://www.nasa.gov/pdf/148072main_DART_mishap_overview.pdf. Accessed 1 Jun 2021

  2. Dennehy, C.J., Carpenter, J.R.: A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission. Technical Report TM-2011-217088. NASA Langley Research Center (April 2011)

  3. Vo, B.-N., Mallick, M., Bar-Shalom, Y., Coraluppi, S., Osborne III, R., Mahler, R.P.S., Vo, B.-T.: Multitarget tracking. In: Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–15 (2015). https://doi.org/10.1002/047134608X.W8275

  4. DeMars, K.J., Jah, M.K.: Probabilistic initial orbit determination using Gaussian mixture models. J. Guid. Control Dyn. 36(5), 1324–1335 (2013). https://doi.org/10.2514/1.59844

    Article  Google Scholar 

  5. Carpenter, J.R., D’Souza, C.N.: Navigation Filter Best Practices. Technical Report TP-2018-219822. NASA Goddard Space Flight Center (April 2018)

  6. Some, R., Doyle, R., Bergman, L., Whitaker, W., Powell, W., Johnson, M., Goforth, M., Lowry, M.: Human and robotic space mission use cases for high-performance spaceflight computing. AIAA Infotech (2013). https://doi.org/10.2514/6.2013-4729

    Article  Google Scholar 

  7. Powell, W. (ed.): High-performance spaceflight computing (HPSC) program overview. In: Space Computing and Connected Enterprise Resiliency Conference. NASA Goddard Space Flight Center Electrical Engineering Division, Bedford (2018)

  8. Mahler, R.P.S.: Advances in Statistical Multisource–Multitarget Information Fusion. Artech House, Norwood (2014)

    MATH  Google Scholar 

  9. Mahler, R.P.S.: Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1152–1178 (2003). https://doi.org/10.1109/TAES.2003.1261119

    Article  Google Scholar 

  10. Vo, B.-N., Ma, W.-K.: The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 54(11), 4091–4104 (2006). https://doi.org/10.1109/TSP.2006.881190

    Article  MATH  Google Scholar 

  11. Hendeby, G., Karlsson, R.: Gaussian mixture PHD filtering with variable probability of detection. In: 17th International Conference on Information Fusion, pp. 1–7. IEEE (2014)

  12. Fritsch, G.S., DeMars, K.J.: Nonlinear Gaussian mixture filtering with intrinsic fault resistance. J. Guid. Control Dyn. 44(12), 2172–2185 (2021). https://doi.org/10.2514/1.G005965

    Article  Google Scholar 

  13. Song, T.L., Mušicki, D., Da Sol, K.: Target tracking with target state dependent detection. IEEE Trans. Signal Process. 59(3), 1063–1074 (2011). https://doi.org/10.1109/TSP.2010.2098401

    Article  MathSciNet  MATH  Google Scholar 

  14. Koch, W.: On exploiting ‘negative’ sensor evidence for target tracking and sensor data fusion. Inf. Fusion 8(1), 28–39 (2007). https://doi.org/10.1016/j.inffus.2005.09.002

    Article  Google Scholar 

  15. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME D 82, 35–45 (1960). https://doi.org/10.1115/1.3662552

    Article  MathSciNet  Google Scholar 

  16. Särkkä, S.: Bayesian Filtering and Smoothing. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139344203

    Book  MATH  Google Scholar 

  17. Mahler, R.P.S.: Statistical Multisource–Multitarget Information Fusion. Artech House, Norwood (2007)

    MATH  Google Scholar 

  18. Bar-Shalom, Y., Li, X.-R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software. Wiley, New York (2001). https://doi.org/10.1002/0471221279

    Book  Google Scholar 

  19. Fritsch, G.S.: Robust approaches to nonlinear filtering with applications to navigation. PhD Thesis, Texas A&M University (2022)

  20. McCabe, J.S.: Multitarget tracking and terrain-aided navigation using square-root consider filters. PhD Thesis, Missouri University of Science and Technology (2018)

  21. Koch, W.: Tracking and Sensor Data Fusion. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-39271-9

    Book  MATH  Google Scholar 

  22. Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge (1974)

    Google Scholar 

  23. Ristic, B.: Particle Filters for Random Set Models. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6316-0

    Book  MATH  Google Scholar 

  24. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017). https://doi.org/10.1080/01621459.2017.1285773

    Article  MathSciNet  Google Scholar 

  25. Bishop, C.M.: Pattern Recognition and Machine Learning, pp. 430–439. Springer, New York (2006)

    MATH  Google Scholar 

  26. Schmidt, S.F.: Applications of state space methods to navigation problems. Adv. Control Syst. 3, 293–340 (1966). https://doi.org/10.1016/B978-1-4831-6716-9.50011-4

    Article  Google Scholar 

  27. Kriegsman, B.A., Tao, Y.-C.: Shuttle navigation system for entry and landing mission phases. J. Spacecr. Rockets 12(4), 213–219 (1975). https://doi.org/10.2514/3.56966

    Article  Google Scholar 

  28. Zanetti, R., Holt, G., Gay, R., D’Souza, C., Sud, J., Mamich, H., Begley, M., King, E., Clark, F.D.: Absolute navigation performance of the Orion Exploration Flight Test 1. J. Guid. Control Dyn. 40(5), 1106–1116 (2017). https://doi.org/10.2514/1.G002371

    Article  Google Scholar 

  29. McCabe, J.S., DeMars, K.J.: Terrain relative navigation with anonymous features. In: AIAA SciTech 2019 Forum, 2019, San Diego, CA (2019). https://doi.org/10.2514/6.2019-0923

  30. Sorenson, H.W., Alspach, D.L.: Recursive Bayesian estimation using Gaussian sums. Automatica 7(4), 465–479 (1971). https://doi.org/10.1016/0005-1098(71)90097-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Alspach, D.L., Sorenson, H.W.: Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Autom. Control AC–17(4), 439–448 (1972). https://doi.org/10.1109/TAC.1972.1100034

    Article  MATH  Google Scholar 

  32. Ross, S.M.: Introduction to Probability Models, 11th edn. Academic, Cambridge (2014)

    MATH  Google Scholar 

  33. Wishner, R.P., Tabaczynski, J.A., Athans, M.: A comparison of three non-linear filters. Automatica 5, 487–496 (1969). https://doi.org/10.1016/0005-1098(69)90110-1

    Article  MATH  Google Scholar 

  34. DeMars, K.J., Bishop, R.H., Jah, M.K.: Entropy-based approach for uncertainty propagation of nonlinear dynamical systems. J. Guid. Control Dyn. 36(4), 1047–1057 (2013). https://doi.org/10.2514/1.58987

    Article  Google Scholar 

  35. Sorenson, H.W., Sacks, J.E.: Recursive fading memory filtering. Inf. Sci. 3(2), 101–119 (1971). https://doi.org/10.1016/S0020-0255(71)80001-4

    Article  MathSciNet  MATH  Google Scholar 

  36. Coder, R.D., Holzinger, M.J.: Multi-objective design of optical systems for space situational awareness. Acta Astronaut. 128, 669–684 (2016). https://doi.org/10.1016/j.actaastro.2016.07.008

    Article  Google Scholar 

  37. Kelso, T.S.: Visually observing Earth satellites. Satell. Times 3(1), 80–82 (1996)

    Google Scholar 

  38. Shaddix, J., Brannum, J., Ferris, A., Hariri, A., Larson, A., Mancini, T., Aristoff, J.: Daytime GEO tracking with “Aquila”: approach and results from a new ground-based SWIR small telescope system. In: Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, HI, 2019, p. 82 (2019)

  39. Ho, Y.-C., Lee, R.C.K.: A Bayesian approach to problems in stochastic estimation and control. IEEE Trans. Autom. Control 9(4), 333–339 (1964). https://doi.org/10.1109/TAC.1964.1105763

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program under Fellowship Number F-8445592924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunner S. Fritsch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Advanced Maui Optical and Space Surveillance Technologies (AMOS 2021) Guest Editors: Lauchie Scott, Ryan Coder, Paul Kervin, Bobby Hunt.

Appendix: Gaussian Product Identity

Appendix: Gaussian Product Identity

Given \({\varvec{h}}(\cdot )\), \({\varvec{R}}\), \({\varvec{m}}\), and \({\varvec{P}}\) are of appropriate dimensions and \({\varvec{R}}\) and \({\varvec{P}}\) are symmetric, positive definite [31, 39]

$$\begin{aligned} p_g({\varvec{z}} \vert {\varvec{h}}({\varvec{x}}),{\varvec{R}})p_g({\varvec{x}}\vert {\varvec{m}},{\varvec{P}}) = p_g({\varvec{z}} \vert {\varvec{h}}({\varvec{m}}),{\varvec{H}}({\varvec{m}}){\varvec{PH}}^T({\varvec{m}})+{\varvec{R}})p_g({\varvec{x}} \vert {\varvec{\mu }},{\varvec{\Pi }}) , \end{aligned}$$
(58a)

where

$$\begin{aligned} {\varvec{\mu }}&= {\varvec{m}} + {\varvec{K}}[{\varvec{z}} - {\varvec{h}}({\varvec{m}})], \end{aligned}$$
(58b)
$$\begin{aligned} {\varvec{\Pi }}&= {\varvec{P}} - {\varvec{K}}{\varvec{H}}({\varvec{m}}){\varvec{P}}, \end{aligned}$$
(58c)
$$\begin{aligned} {\varvec{K}}&= {\varvec{PH}}^T({\varvec{m}})[{\varvec{H}}({\varvec{m}}){\varvec{PH}}^T({\varvec{m}})+{\varvec{R}}]^{-1}. \end{aligned}$$
(58d)

Note that \({\varvec{H}}({\varvec{m}})\) is the Jacobian of \({\varvec{h}}({\varvec{x}})\) evaluated at \({\varvec{x}} = {\varvec{m}}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritsch, G.S., DeMars, K.J. Intrinsic Fault Resistance for Nonlinear Filters with State-Dependent Probability of Detection. J Astronaut Sci 69, 1821–1854 (2022). https://doi.org/10.1007/s40295-022-00353-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00353-9

Keywords

Navigation