Skip to main content
Log in

Real-Time Attitude Independent Calibration of Spinning Spacecraft Magnetometers Using Quasi-Measurements

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Magnetometers are essential sensors for attitude estimation in small spacecraft due to their robust, inexpensive, and lightweight characteristics. However, the raw measurements contain sensor errors. These errors degrade the attitude estimation accuracy. This study proposes a complete real-time attitude-independent magnetometer calibration algorithm for spinning spacecraft. The recursive algorithm aims to estimate the full error state, bias, scale factor, and non-orthogonality corrections in real-time and without any attitude information. The well-known attitude-independent observation based on the magnitude of the sensed magnetic field is aided by newly introduced quasi-measurements to build the algorithm. The algorithm is tested with both simulations and actual spacecraft data. Four quasi-measurements, which are derived using dynamic characteristics of the spacecraft, considerably improve the convergence characteristics of the filter and the estimation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Crassidis, J.L., Markley, F.L.: Unscented filtering for spacecraft attitude estimation. J. Guid. Control Dyn. 26(4), 536–542 (2003). https://doi.org/10.2514/2.5102

    Article  Google Scholar 

  2. Psiaki, M.L., Martel, F., Pal, P.K.: Three-axis attitude determination via Kalman filtering of magnetometer data. J. Guid. Control. Dyn. 13(3), 506–514 (1990). https://doi.org/10.2514/3.25364

    Article  Google Scholar 

  3. Soken, H.E.: A survey of calibration algorithms for small satellite magnetometers. Measurement 122, 417–423 (2018). https://doi.org/10.1016/j.measurement.2017.10.017

    Article  Google Scholar 

  4. Springmann, J.C., Cutler, J.W.: Attitude-independent magnetometer calibration with time-varying bias. J. Guid. Control Dyn. 35(4), 1080–1088 (2012). https://doi.org/10.2514/1.56726

    Article  Google Scholar 

  5. Kim, E., Bang, H., Lee, S.-H.: Attitude independent magnetometer calibration considering magnetic Torquer coupling effect. J. Spacecr. Rocket. 48(4), 691–694 (2011). https://doi.org/10.2514/1.52634

    Article  Google Scholar 

  6. Riwanto, B.A., Tikka, T., Kestila, A., Praks, J.: Particle swarm optimization with rotation axis fitting for magnetometer calibration. IEEE Trans. Aerosp. Electron. Syst. 9251, 1 (2017). https://doi.org/10.1109/TAES.2017.2667458

    Article  Google Scholar 

  7. Alonso, R., Shuster, M.D.: TWOSTEP: a fast robust algorithm for attitude-independent magnetometer-bias determination. J. Astronaut. Sci. 50(4), 433–451 (2002). https://doi.org/10.1007/BF03546247

    Article  Google Scholar 

  8. Alonso, R., Shuster, M.D.: Complete linear attitude-independent magnetometer calibration. J. Astronaut. Sci. 50(4), 477–490 (2002). https://doi.org/10.1007/BF03546249

    Article  Google Scholar 

  9. Crassidis, J.L., Lai, K.-L., Harman, R.R.: Real-Time attitude-independent three-axis magnetometer calibration. J. Guid. Control Dyn. 28(1), 115–120 (2005). https://doi.org/10.2514/1.6278

    Article  Google Scholar 

  10. Wu, J.: Real-time magnetometer disturbance estimation via online nonlinear programming. IEEE Sens. J. 19(12), 4405–4411 (2019). https://doi.org/10.1109/JSEN.2019.2901925

    Article  Google Scholar 

  11. Sakai, S., Bando, N., Shimizu, S., Maru, Y., Fuke, H.: Real-time estimation of the bias error of the magnetometer only with the gyro sensors. In: 28th International Symposium on Space Technology and Science, Okinawa, Japan, pp. 1–6 (2011)

  12. Troni, G., Eustice, R.M.: Magnetometer bias calibration based on relative angular position: Theory and experimental comparative evaluation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 444–450. IEEE (2014). https://doi.org/10.1109/IROS.2014.6942597

  13. Fedele, G., D’Alfonso, L., D’Aquila, G.: Magnetometer bias finite-time estimation using gyroscope data. IEEE Trans. Aerosp. Electron. Syst. 54(6), 2926–2936 (2018). https://doi.org/10.1109/TAES.2018.2832978

    Article  Google Scholar 

  14. Grandvallet, B., Zemouche, A., Boutayeb, M., Changey, S.: Real-time attitude-independent three-axis magnetometer calibration for spinning projectiles: a sliding window approach. IEEE Trans. Control Syst. Technol. 22(1), 255–264 (2014). https://doi.org/10.1109/TCST.2012.2237402

    Article  Google Scholar 

  15. Söken, H.E., Sakai, S.: Real-time attitude-independent magnetometer bias estimation for spinning spacecraft. J. Guid. Control Dyn. 41(1), 276–279 (2017). https://doi.org/10.2514/1.g002706

    Article  Google Scholar 

  16. Soken, H.E., Cetin, M.E., Sakai, S.-I.: Attitude-independent magnetometer calibration for spinning spacecraft using quasi-measurements. In: AAS/AIAA Astrodynamics Specialist Conference, AAS 20–501 (2020)

  17. La Scala, B.F., Bitmead, R.R., Quinn, B.G.: Design of an extended kalman filter frequency tracker. IEEE Trans. Signal Process. 44(2), 739–742 (1996). https://doi.org/10.1109/78.489052

    Article  Google Scholar 

  18. Zhang, Z., Xiong, J., Jin, J.: On-orbit real-time magnetometer bias determination for micro-satellites without attitude information. Chin. J. Aeronaut. 28(5), 1503–1509 (2014). https://doi.org/10.1016/j.cja.2015.08.001

    Article  Google Scholar 

  19. Soken, H.E., Sakai, S.-I., Asamura, K., Nakamura, Y., Takashima, T.: Spin parameters and nonlinear kalman filtering for spinning spacecraft attitude estimation. In: AAS/AIAA Astrodynamics Specialist Conference, AAS 17–249 (2017)

  20. Nakamura, Y., Fukuda, S., Shibano, Y., Ogawa, H., Sakai, S.-I., Shimizu, S., Soken, E., Miyazawa, Y., Toyota, H., Kukita, A., Maru, Y., Nakatsuka, J., Sakai, T., Takeuchi, S., Maki, K., Mita, M., Ogawa, E., Kakehashi, Y., Nitta, K., Asamura, K., Takashima, T., Shinohara, I.: Exploration of energization and radiation in geospace (ERG): challenges, development, and operation of satellite systems. Earth Planets Space (2018). https://doi.org/10.1186/s40623-018-0863-z

  21. Soken, H.E., Sakai, S.-I., Asamura, K., Nakamura, Y., Takashima, T., Shinohara, I.: Filtering-based three-axis attitude determination package for spinning spacecraft: preliminary results with arase. Aerospace 7(7), 97 (2020). https://doi.org/10.3390/aerospace7070097

Download references

Acknowledgements

This research is supported in part by the ERG project of ISAS/JAXA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mustafa Efe Cetin or Halil Ersin Soken.

Ethics declarations

Declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetin, M.E., Soken, H.E. & Sakai, Si. Real-Time Attitude Independent Calibration of Spinning Spacecraft Magnetometers Using Quasi-Measurements. J Astronaut Sci 69, 1726–1743 (2022). https://doi.org/10.1007/s40295-022-00349-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00349-5

Keywords

Navigation