Skip to main content
Log in

Detection of Unknown Space Objects Based on Optimal Sensor Tasking and Hypothesis Surfaces Using Variational Equations

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

With the rapid increase in the number of space missions, the hazard of growing space debris population in important space territories like the geosynchronous Earth orbit (GEO) region deserves deeper scrutiny. One of the main challenges is to find optimal sensor tasking schemes to detect objects that are not previously cataloged. This paper introduces a method in which a so-called hypothesis surface is used to indicate valuable sensor viewing directions. The hypothesis surface is created using analytic orbit perturbation theory with crucial additions to capture resonance effects and offer sufficient accuracy for the near-Earth region. So-called hypothesis objects are analytically propagated from an early epoch to an epoch near the observation session. Their average positions over the next 24 h are used to design the hypothesis surface. Two cases are shown: (i) a validation case, where we use the hypothesis surface for detecting GEO objects currently in the two-line element set (TLE) catalog, and (ii) a survey strategy to detect high area-to-mass ratio (HAMR) objects. For a variety of observation strategies, for the validation case, we demonstrate that the hypothesis surface is successfully able to detect a large number of GEO objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Erwin, R.S., Albuquerque, P., Jayaweera, S.K., Hussein, I.: Dynamic sensor tasking for space situational awareness. In: Proceedings of the 2010 American control conference, pp. 1153–1158. https://doi.org/10.1109/ACC.2010.5530989

  2. Hobson, T.A., Clarkson, I.: Sensor-scheduling simulation of disparate sensors for space situational awareness. In: Proceedings of the advanced Maui optical and space surveillance technologies conference. Maui, HI (2011)

  3. Linares, R., Furfaro, R.: Dynamic sensor tasking for space situational awareness via reinforcement learning. In: Proceedings of the advanced Maui optical and space surveillance technologies conference. Maui, HI (2016)

  4. Hill, K., Sydney, P., Hamada, K., Cortez, R., Luu, K., Jah, M., Schumacher, P.W., Coulman, M., Houchard, J., Naho’olewa, D.: Covariance-based network tasking of optical sensors. In: Proceedings of the AAS/AIAA space flight mechanics meeting. San Diego, CA (2010)

  5. Sunberg, Z., Chakravorty, S., Erwin, R.: Information space sensor tasking for space situational awareness. In: Proceedings of the 2014 American control conference, pp. 79–84. https://doi.org/10.1109/ACC.2014.6858922

  6. Kozai, Y.: The motion of a close Earth satellite. Astronom. J. 64, 367–377 (1959). https://doi.org/10.1086/107957

    Article  MathSciNet  Google Scholar 

  7. Roy, A.E.: Luni-solar perturbations of an Earth satellite. Astrophys. Sp. Sci. 4, 375–386 (1969). https://doi.org/10.1007/BF00651343

    Article  Google Scholar 

  8. Hoots, F.R., France, R.G.: An analytic satellite theory using gravity and a dynamic atmosphere. Celest. Mech. 40, 1–18 (1987). https://doi.org/10.1007/BF01232321

    Article  MATH  Google Scholar 

  9. McMahon, J.W.: An analytical theory for the perturbative effect of solar radiation pressure on natural and artificial satellites. PhD Dissertation. Department of Aerospace Engineering Sciences, The University of Colorado Boulder, CO (2011)

  10. Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378–396 (1959). https://doi.org/10.1086/107958

    Article  MathSciNet  Google Scholar 

  11. Lane, M.T.: An analytical treatment of resonance effects on satellite orbits. Celest. Mech. 42, 3–38 (1987). https://doi.org/10.1007/BF01232946

    Article  Google Scholar 

  12. Cook, G.E.: Luni-solar perturbations of the orbit of an Earth satellite. Geophys. J. Int. 6(3), 271–291 (1962). https://doi.org/10.1111/j.1365-246X.1962.tb00351.x

    Article  MATH  Google Scholar 

  13. Schildknecht, T., Musci, R., Ploner, M., Flury, W., Kuusela, J., Cruz L., Palmero, F.D.: An optical search for small-size debris in GEO and GTO. In: The fifth U.S.-Russian space surveillance workshop. Pulkovo, St. Petersburg (2003)

  14. Schildknecht, T., Musci, R., Ploner, M., Beutler, G., Flury, W., Kuusela, J., Cruz, L., Palmero, F.D.: Optical observations of space debris in GEO and in highly-eccentric orbits. Adv. Space Res. 34(5), 901–911 (2004). https://doi.org/10.1016/j.asr.2003.01.009

    Article  Google Scholar 

  15. Frueh, C., Kelecy, T.M., Jah, M.K.: Coupled orbit-attitude dynamics of high area-to-mass ratio (HAMR) objects: influence of solar radiation pressure, Earth’s shadow and the visibility in light curves. Celest. Mech. Dyn. Astron. 117, 385–404 (2013). https://doi.org/10.1007/s10569-013-9516-5

    Article  MathSciNet  Google Scholar 

  16. Frueh, C., Paul, S.N., Fiedler, H.: Sensor tasking for detection and custody of HAMR objects. In: Proceedings of the advanced Maui optical and space surveillance technologies conference. Maui, HI (2017)

  17. Frueh, C.: Realistic sensor tasking strategies. In: Proceedings of the advanced Maui optical and space surveillance technologies conference. Maui, HI (2016)

  18. Cain, B.J.: Determination of mean elements for Brouwer’s satellite theory. Astronom. J. 67(6), 391–392 (1962). https://doi.org/10.1086/108745

    Article  Google Scholar 

  19. Kaula, W.M.: Theory of satellite geodesy. Blaisdell, Waltham (1966)

    MATH  Google Scholar 

  20. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980). https://doi.org/10.1016/0771-050X(80)90013-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Paul, S.N.: Orbital perturbations for space situational awareness. PhD Dissertation. School of Aeronautics and Astronautics, Purdue University, IN (2020)

  22. Valk, S., Lemaitre, A.: Semi-analytic investigation of high area-to-mass ratio geosynchronous space debris including Earth’s shadowing effects. Adv. Space Res. 42(8), 1429–1443 (2008). https://doi.org/10.1016/j.asr.2008.02.010

    Article  Google Scholar 

  23. Julier, S.J., Uhlmann, J.K.: A new extension of the Kalman filter to nonlinear systems. In: Proceedings of the 11th international symposium on aerospace/defense sensing, simulation, and controls. Orlando, FL (1997)

  24. Gupta, P.L., Gupta, R.D.: Sample size determination in estimating a covariance matrix. Comput. Stat. Data Anal. 5(3), 185–192 (1987). https://doi.org/10.1016/0167-9473(87)90014-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Wan, E., Merwe, R.: The unscented Kalman filter, Kalman filtering and neural networks. Wiley, New York (2001)

    Google Scholar 

  26. Burkardt, J.: The truncated normal distribution. https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf (2014). Accessed Oct 2021

  27. Wilhelm, S., Manjunath, B.G.: tmvtnorm: truncated multivariate normal and student t distribution, R package version 1.4-10. http://CRAN.R-project.org/package=tmvtnorm (2015). Accessed Oct 2021

  28. Tallis, G.M.: The moment generating function of the truncated multinormal distribution. J. R. Stat. Soc. Ser. B (Methodological) 23(1), 223–229 (1961)

    MATH  Google Scholar 

  29. Johnson, N., Kotz, S.: Distribution in statistics: continuous multivariate distributions. Wiley, New York (1972)

    MATH  Google Scholar 

  30. Lee, L.-F.: On the first and second moments of the truncated multi-normal distribution and a simple estimator. Econ. Lett. 3(2), 165–169 (1979). https://doi.org/10.1016/0165-1765(79)90111-3

    Article  Google Scholar 

  31. Leppard, P., Tallis, G.M.: Evaluation of the mean and covariance of the truncated multinormal. J. R. Stat. Soc. Ser. C (Appl. Stat.) 38(3), 543–553 (1989)

    MATH  Google Scholar 

  32. Manjunath, B.G., Wilhelm, S.: Moments calculation for the double truncated multivariate normal density. https://arxiv.org/abs/1206.5387 (2012). Accessed Oct 2021

  33. Kurz, G., Gilitschenski, I., Hanebeck, U.D.: The partially wrapped normal distribution for SE(2) estimation. In: Proceedings of the 2014 international conference on multisensor fusion and information integration for intelligent systems (MFI). Beijing, China (2014). https://doi.org/10.1109/MFI.2014.6997733

  34. Little, B.D., Frueh, C.: SSA sensor tasking: comparison of machine learning with classical optimization methods. In: Proceedings of the advanced Maui optical and space surveillance technologies conference. Maui, HI (2018)

  35. Frueh, C., Fielder, H., Herzog, J.: Heuristic and optimized sensor tasking observation strategies with exemplification for geosynchronous objects. J. Guid. Control Dyn. 41(5), 1036–1048 (2018). https://doi.org/10.2514/1.G003123

    Article  Google Scholar 

  36. Little, B.D., Frueh, C.: Space situational awareness sensor tasking: comparison of machine learning with classical optimization methods. J. Guid. Control Dyn. 43(2), 262–273 (2020). https://doi.org/10.2514/1.G004279

    Article  Google Scholar 

  37. Rose, M.J.: Optical sensor uncertainties and variable repositioning times in the single and multi-sensor tasking problem. MS Thesis. School of Aeronautics and Astronautics, Purdue University, IN (2020)

  38. Park, R.S., Scheeres, D.J.: Nonlinear mapping of Gaussian statistics: theory and applications to spacecraft trajectory design. J. Guid. Control Dyn. 29(6), 1367–1375 (2006). https://doi.org/10.2514/1.20177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smriti Nandan Paul.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Analytic Expressions for the Entries of Second Hybrid Moment of a Partially Wrapped Normal Distribution

Appendix A Analytic Expressions for the Entries of Second Hybrid Moment of a Partially Wrapped Normal Distribution

$$\begin{aligned}&\varvec{m}_2 (1,1)= \frac{a}{2}[1-\exp {(-C_{11})}\cos {2\mu _1}] \end{aligned}$$
(A1)

where \(a=1-exp{(-C_{11})}\).

$$\begin{aligned}&\varvec{m}_2 (1,2)=-\frac{a}{2}exp(-C_{11})\sin {2\mu _1} \end{aligned}$$
(A2)
$$\begin{aligned}&\varvec{m}_2 (1,3)= \frac{1}{2}exp(-\frac{1}{2}(C_{11}+2C_{12}+C_{22}))\cos {(\mu _1+\mu _2)}\nonumber \\&+\frac{1}{2}exp(-\frac{1}{2}(C_{11}-2C_{12}+C_{22}))\cos {(\mu _1-\mu _2)}\nonumber \\&-\cos {\mu _1}exp(-C_{11}/2)\cos {\mu _2}exp(-C_{22}/2) \end{aligned}$$
(A3)
$$\begin{aligned}\varvec{m}_2 (1,4)&=\frac{1}{2} exp(-\frac{1}{2}(C_{11}+2C_{12}+C_{22}))\sin {(\mu _1+\mu _2)}\nonumber \\&\quad-\frac{1}{2}exp(-\frac{1}{2}(C_{11}-2C_{12}+C_{22}))\sin {(\mu _1-\mu _2)}\nonumber \\&\quad-\cos {\mu _1}exp(-C_{11}/2)\sin {\mu _2}exp(-C_{22}/2) \end{aligned}$$
(A4)
$$\begin{aligned}\varvec{m}_2 (1,5)&= \frac{1}{2}exp(-\frac{1}{2}(C_{11}+2C_{13}+C_{33}))\cos {(\mu _1+\mu _3)}\nonumber \\&\quad+\frac{1}{2}exp(-\frac{1}{2}(C_{11}-2C_{13}+C_{33}))\cos {(\mu _1-\mu _3)}\nonumber \\&\quad-\cos {\mu _1}exp(-C_{11}/2)\cos {\mu _3}exp(-C_{33}/2) \end{aligned}$$
(A5)
$$\begin{aligned}&\varvec{m}_2 (1,6)=\frac{1}{2} exp(-\frac{1}{2}(C_{11}+2C_{13}+C_{33}))\sin {(\mu _1+\mu _3)}\nonumber \\&-\frac{1}{2}exp(-\frac{1}{2}(C_{11}-2C_{13}+C_{33}))\sin {(\mu _1-\mu _3)}\nonumber \\&-\cos {\mu _1}exp(-C_{11}/2)\sin {\mu _3}exp(-C_{33}/2) \end{aligned}$$
(A6)
$$\begin{aligned}&\varvec{m}_2 (1,7)= -exp\bigg (-\frac{C_{11}}{2}\bigg ) C_{14} \sin {\mu _1} \end{aligned}$$
(A7)
$$\begin{aligned}&\varvec{m}_2 (1,8)=-exp\bigg (-\frac{C_{11}}{2}\bigg ) C_{15} \sin {\mu _1} \end{aligned}$$
(A8)
$$\begin{aligned}&\varvec{m}_2 (1,9)=-exp\bigg (-\frac{C_{11}}{2}\bigg ) C_{16} \sin {\mu _1} \end{aligned}$$
(A9)
$$\begin{aligned}&\varvec{m}_2 (2,2)= \frac{a}{2}\bigg (1+exp(-C_{11})\cos {(2\mu _1)}\bigg ) \end{aligned}$$
(A10)
$$\begin{aligned}\varvec{m}_2 (2,3)&=\frac{1}{2} exp(-\frac{1}{2}(C_{11}+2C_{12}+C_{22}))\sin {(\mu _1+\mu _2)}\nonumber \\&\quad-\frac{1}{2}exp(-\frac{1}{2}(C_{11}-2C_{12}+C_{22}))\sin {(\mu _2-\mu _1)}\nonumber \\&\quad-\cos {\mu _2}exp(-C_{22}/2)\sin {\mu _1}exp(-C_{11}/2) \end{aligned}$$
(A11)
$$\begin{aligned}&\varvec{m}_2 (2,4)= \frac{1}{2}exp(-\frac{1}{2}(C_{11}-2C_{12}+C_{22}))\cos {(\mu _1-\mu _2)}\nonumber \\&-\frac{1}{2}exp(-\frac{1}{2}(C_{11}+2C_{12}+C_{22}))\cos {(\mu _1+\mu _2)}\nonumber \\&-\sin {\mu _1}exp(-C_{11}/2)\sin {\mu _2}exp(-C_{22}/2) \end{aligned}$$
(A12)
$$\begin{aligned}&\varvec{m}_2 (2,5)=\frac{1}{2} exp(-\frac{1}{2}(C_{33}+2C_{13}+C_{11}))\sin {(\mu _1+\mu _3)}\nonumber \\&-\frac{1}{2}exp(-\frac{1}{2}(C_{33}-2C_{13}+C_{11}))\sin {(\mu _3-\mu _1)}\nonumber \\&-\cos {\mu _3}exp(-C_{33}/2)\sin {\mu _1}exp(-C_{11}/2) \end{aligned}$$
(A13)
$$\begin{aligned}&\varvec{m}_2 (2,6)= \frac{1}{2}exp(-\frac{1}{2}(C_{11}-2C_{13}+C_{33}))\cos {(\mu _1-\mu _3)}\nonumber \\&-\frac{1}{2}exp(-\frac{1}{2}(C_{11}+2C_{13}+C_{33}))\cos {(\mu _1+\mu _3)}\nonumber \\&-\sin {\mu _1}exp(-C_{11}/2)\sin {\mu _3}exp(-C_{33}/2) \end{aligned}$$
(A14)
$$\begin{aligned}&\varvec{m}_2 (2,7)= exp(-C_{11}/2)C_{14}\cos {\mu _1} \end{aligned}$$
(A15)
$$\begin{aligned}&\varvec{m}_2 (2,8)= exp(-C_{11}/2)C_{15}\cos {\mu _1} \end{aligned}$$
(A16)
$$\begin{aligned}&\varvec{m}_2 (2,9)= exp(-C_{11}/2)C_{16}\cos {\mu _1} \end{aligned}$$
(A17)
$$\begin{aligned}&\varvec{m}_2 (3,3)= \frac{b}{2}[1-\exp {(-c_{22})}\cos {2\mu _2}] \end{aligned}$$
(A18)

where \(b=1-exp{(-C_{22})}\).

$$\begin{aligned}&\varvec{m}_2 (3,4)=-\frac{b}{2}exp(-C_{22})\sin {2\mu _2} \end{aligned}$$
(A19)
$$\begin{aligned}&\varvec{m}_2 (3,5)= \frac{1}{2}exp(-\frac{1}{2}(C_{22}+2C_{23}+C_{33}))\cos {(\mu _2+\mu _3)}\nonumber \\&+\frac{1}{2}exp(-\frac{1}{2}(C_{22}-2C_{23}+C_{33}))\cos {(\mu _2-\mu _3)}\nonumber \\&-\cos {\mu _2}exp(-C_{22}/2)\cos {\mu _3}exp(-C_{33}/2) \end{aligned}$$
(A20)
$$\begin{aligned}&\varvec{m}_2 (3,6)=\frac{1}{2} exp(-\frac{1}{2}(C_{22}+2C_{23}+C_{33}))\sin {(\mu _2+\mu _3)}\nonumber \\&-\frac{1}{2}exp(-\frac{1}{2}(C_{22}-2C_{23}+C_{33}))\sin {(\mu _2-\mu _3)}\nonumber \\&-\cos {\mu _2}exp(-C_{22}/2)\sin {\mu _3}exp(-C_{33}/2) \end{aligned}$$
(A21)
$$\begin{aligned}&\varvec{m}_2 (3,7)= -exp\bigg (-\frac{C_{22}}{2}\bigg ) C_{24} \sin {\mu _2} \end{aligned}$$
(A22)
$$\begin{aligned}&\varvec{m}_2 (3,8)= -exp\bigg (-\frac{C_{22}}{2}\bigg ) C_{25} \sin {\mu _2} \end{aligned}$$
(A23)
$$\begin{aligned}&\varvec{m}_2 (3,9)= -exp\bigg (-\frac{C_{22}}{2}\bigg ) C_{26} \sin {\mu _2} \end{aligned}$$
(A24)
$$\begin{aligned}&\varvec{m}_2 (4,4)= \frac{b}{2}\bigg (1+exp(-C_{22})\cos {(2\mu _2)}\bigg ) \end{aligned}$$
(A25)
$$\begin{aligned}\varvec{m}_2 (4,5)&=\frac{1}{2} exp(-\frac{1}{2}(C_{33}+2C_{23}+C_{22}))\sin {(\mu _3+\mu _2)}\nonumber \\&\quad-\frac{1}{2}exp(-\frac{1}{2}(C_{33}-2C_{23}+C_{22}))\sin {(\mu _3-\mu _2)}\nonumber \\&\quad-\cos {\mu _3}exp(-C_{33}/2)\sin {\mu _2}exp(-C_{22}/2) \end{aligned}$$
(A26)
$$\begin{aligned}\varvec{m}_2 (4,6)&= \frac{1}{2}exp(-\frac{1}{2}(C_{22}-2C_{23}+C_{33}))\cos {(\mu _2-\mu _3)}\nonumber \\&\quad-\frac{1}{2}exp(-\frac{1}{2}(C_{22}+2C_{23}+C_{33}))\cos {(\mu _2+\mu _3)}\nonumber \\&\quad-\sin {\mu _2}exp(-C_{22}/2)\sin {\mu _3}exp(-C_{33}/2) \end{aligned}$$
(A27)
$$\begin{aligned}&\varvec{m}_2 (4,7)= exp(-C_{22}/2)C_{24}\cos {\mu _2} \end{aligned}$$
(A28)
$$\begin{aligned}&\varvec{m}_2 (4,8)= exp(-C_{22}/2)C_{25}\cos {\mu _2} \end{aligned}$$
(A29)
$$\begin{aligned}&\varvec{m}_2 (4,9)= exp(-C_{22}/2)C_{26}\cos {\mu _2} \end{aligned}$$
(A30)
$$\begin{aligned}&\varvec{m}_2 (5,5)= \frac{c}{2}[1-\exp {(-C_{33})}\cos {2\mu _3}] \end{aligned}$$
(A31)

where \(c=1-exp{(-C_{33})}\).

$$\begin{aligned} \varvec{m}_2 (5,6)= & {} -\frac{c}{2}exp(-C_{33})\sin {2\mu _3} \end{aligned}$$
(A32)
$$\begin{aligned} \varvec{m}_2 (5,7)= & {} -exp\bigg (-\frac{C_{33}}{2}\bigg ) C_{34} \sin {\mu _3} \end{aligned}$$
(A33)
$$\begin{aligned} \varvec{m}_2 (5,8)= & {} -exp\bigg (-\frac{C_{33}}{2}\bigg ) C_{35} \sin {\mu _3} \end{aligned}$$
(A34)
$$\begin{aligned} \varvec{m}_2 (5,9)= & {} -exp\bigg (-\frac{C_{33}}{2}\bigg ) C_{36} \sin {\mu _3} \end{aligned}$$
(A35)
$$\begin{aligned} \varvec{m}_2 (6,6)= & {} \frac{c}{2}\bigg (1+exp(-C_{33})\cos {(2\mu _3)}\bigg ) \end{aligned}$$
(A36)
$$\begin{aligned} \varvec{m}_2 (6,7)= & {} exp(-C_{33}/2)C_{34}\cos {\mu _3} \end{aligned}$$
(A37)
$$\begin{aligned} \varvec{m}_2 (6,8)= & {} exp(-C_{33}/2)C_{35}\cos {\mu _3} \end{aligned}$$
(A38)
$$\begin{aligned} \varvec{m}_2 (6,9)= & {} exp(-C_{33}/2)C_{36}\cos {\mu _3} \end{aligned}$$
(A39)
$$\begin{aligned} \varvec{m}_2 (7,7)= & {} C_{44} \end{aligned}$$
(A40)
$$\begin{aligned} \varvec{m}_2 (7,8)= & {} C_{45} \end{aligned}$$
(A41)
$$\begin{aligned} \varvec{m}_2 (7,9)= & {} C_{46} \end{aligned}$$
(A42)
$$\begin{aligned} \varvec{m}_2 (8,8)= & {} C_{55} \end{aligned}$$
(A43)
$$\begin{aligned} \varvec{m}_2 (8,9)= & {} C_{56} \end{aligned}$$
(A44)
$$\begin{aligned} \varvec{m}_2 (9,9)= & {} C_{66} \end{aligned}$$
(A45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.N., Little, B.D. & Frueh, C. Detection of Unknown Space Objects Based on Optimal Sensor Tasking and Hypothesis Surfaces Using Variational Equations. J Astronaut Sci 69, 1179–1215 (2022). https://doi.org/10.1007/s40295-022-00333-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00333-z

Keywords

Navigation