Skip to main content
Log in

Space Robot Performance During Tangent Capture of an Uncontrolled Target Satellite

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper presents an analysis of the capture of an uncontrolled target satellite by a manipulator mounted on a chaser spacecraft. We compare our novel technique, called tangent capture, with two other well-known approaches: free-floating and forced synchronous motion. In the proposed approach, the chaser has only initial linear velocity. The analysis takes the form of a numerical simulation performed on a three-dimensional system. Performance is evaluated using three parameters: (i) control torques in the manipulator’s joints; (ii) time to eventual collision between system components; and (iii) reaction torque and force in the gripper. The evaluation demonstrates that the tangent capture scenario improves the values of all analyzed parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Video files are attached to submission.

Notes

  1. The project, titled “Mobility of a nonholonomic space robot constrained by large movable obstacles” was financed by the Polish National Science Center under research grant 2015/17/B/ST7/03995.

References

  1. Kirchner, G., Steindorfer, M., Wang, P., Koidl, F., Kucharski, D., Silha, J., Schildknecht, T, Krag, H., Flohrer, T. (2017) Determination of attitude and attitude motion of space debris, using laser ranging and single-photon light curve data. In: Proc. 7th European Conference on Space Debris, Darmstadt, Germany

  2. Olmos, D. E., Peters, T. V., Naudet, J., Chitu C. C., Seweryn, K., Barciński, T. (2014) AnDROiD, small mission for active debris removal. In: Proc. Small Satellites Systems and Services - The 4S Symposium, Majorca, Spain

  3. Colmenarejo, P., Graziano, M., Novelli, G., Mora, D., Serra, P., Tomassini, A., Seweryn, K., Prisco, G., Fernandez, J.G.: On ground validation of debris removal technologies. Acta Astronaut. 158, 206–219 (2019). https://doi.org/10.1016/j.actastro.2018.01.026

    Article  Google Scholar 

  4. Colmenarejo, P., Branco, J., Santos, N., Serra, P., Telaar, J., Strauch, H., Fruhnert, M., Giordano, A., M., De Stefano, M., Ott, Ch., Reiner, M., Henry, D., Jaworski, J., Papadopoulos, E., Visentin, G., Ankersen, F., Gil-Fernandez, J. (2018) Methods and outcomes of the COMRADE project - Design of robust Combined control for robotic spacecraft and manipulator in servicing missions: comparison between between Hinf and nonlinear Lyapunov-based approaches. In: Proc. 69th International Astronautical Congress (IAC), Bremen, Germany

  5. Reintsema, D., Sommer, B., Wolf, T., Theater, J., Radthke, A., Sommer, J., Naumann, W., Rank, P.: DEOS ‐ The In‐ flight Technology Demonstration of German's Robotics Approach to Dispose Malfunctioned Satellites. In: Proc. 11th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2011), ESTEC, Noordwijk, The Netherlands (2011)

  6. Biesbroek, R., Soares, T., Husing, J., Innocenti, L. (2013) The e.Deorbit CDF Study: A Design Study for the Safe Removal of a Large Space Debris. In: Proc. 6th European Conference on Space Debris, Darmstadt, Germany

  7. Estable, S., Pruvost, C., Ferreira, E., Telaar, J., Fruhnert, M., Imhof, Ch., Rybus, T., Peckover, G., Lucas, R., Ahmed, R., Oki, T., Wygachiewicz, M., Kicman, P., Lukasik, A., Santos, N., Milhano, T., Arroz, P., Biesbroek, R., Wolahan, A.: Capturing and deorbiting Envisat with an Airbus Spacetug. Results from the ESA e. Deorbit consolidation phase study. J. Space Saf. Eng. 7(1), 52–66 (2020). https://doi.org/10.1016/j.jsse.2020.01.003

    Article  Google Scholar 

  8. Burgess Ch., Hall A., Wilson N., Fellowes S. (2019) In-Flight Demonstration of an Active Debris Removal Harpoon Capture System. In: Proc. 15th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA 2019), ESTEC, Noordwijk, The Netherlands

  9. Aglietti, G.S., Taylor, B., Fellowes, S., Salmon, T., Retat, I., Hall, A., Chabot, T., Pisseloupe, A., Cox, C., Zarkesh, A., Mafficini, A., Vinkoff, N., Bashford, K., Bernal, C., Chaumette, F., Pollini, A., Steyn, W.H.: The active space debris removal mission RemoveDEBRIS. Part 2: In orbit operations. Acta Astronaut. 168, 310–322 (2020). https://doi.org/10.1016/j.actaastro.2019.09.001

    Article  Google Scholar 

  10. Aghili, F.: Optimal trajectories and robot control for detumbling a non-cooperative satellite. J. Guid. Control Dyn. 43(5), 981–988 (2020). https://doi.org/10.2514/1.G004758

    Article  Google Scholar 

  11. Virgili-Llop, J., Drew, J.V., Zappulla, R., II., Romano, M.: Laboratory experiments of resident space object capture by a spacecraft–manipulator system. Aerosp. Sci. Technol. 71, 530–545 (2017). https://doi.org/10.1016/j.ast.2017.09.043

    Article  Google Scholar 

  12. Dubowsky, S., Papadopoulos, E.: The kinetics, dynamics, and control of free flying and free-floating space robotic systems. IEEE Trans. Robot. Autom. 9(5), 531–543 (1993). https://doi.org/10.1109/70.258046

    Article  Google Scholar 

  13. Li, S., She, Y.: Recent advances in contact dynamics and post-capture control for combined spacecraft. Prog. Aerosp. Sci. 120, 100678 (2021). https://doi.org/10.1016/j.paerosci.2020.100678

    Article  Google Scholar 

  14. Oleś, J., Rybus, T., Seweryn, K., Surowiec, M., Wojtyra, M., Pietras, M., Scheper, M. (2017) Testing and simulation of contact during on-orbit operations. In: Proc. 14th Symposium on Advanced space technologies in robotics and automation (ASTRA 2017), Leiden, The Netherlands

  15. Flores-Abad, A., Terán, M.A.G., Ponce, I.U., Nandayapa, M.: Compliant force sensor-less capture of an object in orbit. IEEE Trans. Aerosp. Electron. Syst. 57(1), 497–505 (2021). https://doi.org/10.1109/TAES.2020.3027108

    Article  Google Scholar 

  16. Cavenago, F., Giordano, A.M., Massari, M.: Contact detection, isolation and estimation for orbital robots through an observer based on a centroid-joints dynamics. Acta Astronaut. 181, 40–51 (2021). https://doi.org/10.1016/j.actaastro.2021.01.001

    Article  Google Scholar 

  17. Cavenago, F., Massari, M., Giordano, A.M., Garofalo, G.: Unexpected collision detection, estimation, and reaction for a free-flying orbital robot. J. Guid. Control Dyn. 44(5), 967–982 (2021). https://doi.org/10.2514/1.G005585

    Article  Google Scholar 

  18. Giordano, A.M., Calzolari, D., De Stefano, M., Mishra, H., Ott, Ch., Albu-Schäffer, A.: Compliant floating-base control of space robots. IEEE Robot. Autom. Lett. 6(4), 7485–7492 (2021). https://doi.org/10.1109/LRA.2021.3097496

    Article  Google Scholar 

  19. Seweryn, K., Basmadji, F. L., Rybus, T. (2020) Tangent Capture of an Uncontrolled Target Satellite by Space Robot: Simulation Studies. In: Proc. 2020 AIAA SciTech Forum and Exposition (AIAA-SciTech 2020), Orlando, Florida, USA https://doi.org/10.2514/6.2020-1602

  20. Seweryn, K., Sąsiadek, J.Z.: Satellite angular motion classification for active on-orbit debris removal using robots. Aircr. Eng. Aerosp. Technol. 91(2), 317–332 (2019). https://doi.org/10.1108/AEAT-01-2018-0049

    Article  Google Scholar 

  21. Tchoń, K., Ratajczak, J.: General lagrange-type jacobian inverse for nonholonomic robotic systems. IEEE Trans. Robot. 34(1), 256–263 (2018). https://doi.org/10.1109/TRO.2017.2754520

    Article  Google Scholar 

  22. Longman, R.W. (1993) The Kinetics and Workspace of a Satellite-Mounted Robot. In: Xu Y., Kanade T. (eds) Space Robotics: Dynamics and Control. The Kluwer International Series in Engineering and Computer Science, Vol 188, pp. 27–44. Springer, Boston, MA https://doi.org/10.1007/978-1-4615-3588-1_2

  23. Mu, Z., Xu, W., Liang, B.: Avoidance of multiple moving obstacles during active debris removal using a redundant space manipulator. Int. J. Control Autom. Syst. 15, 815–826 (2017). https://doi.org/10.1007/s12555-015-0455-7

    Article  Google Scholar 

  24. Rybus, T.: Obstacle avoidance in space robotics: review of major challenges and proposed solutions. Prog. Aerosp. Sci. 101, 31–48 (2018). https://doi.org/10.1016/j.paerosci.2018.07.001

    Article  Google Scholar 

  25. Tchoń, K., Ratajczak, J., Jakubiak, J. (2019) Normal forms of robotic systems with affine Pfaffian constraints a case study In: Lenarcic, J., Parenti-Castelli V., (eds) Advances in robot kinematics, Springer, Cham https://doi.org/10.1007/978-3-319-93188-3_29

  26. Tchoń, K., Ratajczak, J. (2017) General Lagrangian Jacobian motion planning algorithm for affine robotic systems with application to a space manipulator. In: Proc. 22nd International Conference on Methods and Models in Automation and Robotics (MMAR 2017), Międzyzdroje, Poland https://doi.org/10.1109/MMAR.2017.8046950

  27. Domski, W., Mazur A. (2018) Path tracking with orthogonal parametrization for a satellite with partial state information. In: Proc 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2018), Porto, Portugal https://doi.org/10.5220/0006835102520257

  28. Domski, W., Mazur A. (2017) Emergency control of a space 3R manipulator in case of one joint failure In Proc 22nd International Conference on Methods and Models in Automation and Robotics (MMAR 2017), Międzyzdroje, Poland https://doi.org/10.1109/MMAR.2017.8046858

  29. Basmadji, F.L., Seweryn, K., Sasiadek, J.Z.: Space robot motion planning in the presence of nonconserved linear and angular momenta. Multibody Syst. Dyn. 50, 71–96 (2020). https://doi.org/10.1007/s11044-020-09753-x

    Article  MathSciNet  MATH  Google Scholar 

  30. Ratajczak A., Ratajczak J. (2019) Trajectory Reproduction Algorithm in Application to an On-Orbit Docking Maneuver with Tumbling Target. In: Proc. 12th International Workshop on Robot Motion and Control (RoMoCo 2019), Poznań, Poland DOi: https://doi.org/10.1109/RoMoCo.2019.8787367

  31. Seweryn, K., Rybus, T., Colmenarejo, P., Novelli, G., Oleś, J., Pietras, M., Sasiadek, J.Z., Scheper, M., Tarenko, K. (2018) Validation of the robot rendezvous and grasping manoeuvre using microgravity simulators. In: Proc. 2018 IEEE International Conference on Robotics and Automation (ICRA 2018), Brisbane, Australia https://doi.org/10.1109/ICRA.2018.8460475

  32. Subbarao, K., Welsh, S.J.: Nonlinear control of motion synchronization for satellite proximity operations. J. Guid. Control Dyn. 31(5), 1284–1294 (2008). https://doi.org/10.2514/1.34248

    Article  Google Scholar 

  33. Rybus, T., Seweryn, K., Oleś, J., Basmadji, F.L., Tarenko, K., Moczydłowski, R., Barciński, T., Kindracki, J., Mężyk, Ł, Paszkiewicz, P., Wolański, P.: Application of a planar air-bearing microgravity simulator for demonstration of operations required for an orbital capture with a manipulator. Acta Astronaut. 155, 211–229 (2019). https://doi.org/10.1016/j.actaastro.2018.12.004

    Article  Google Scholar 

  34. Seweryn, K., Banaszkiewicz, M. (2008) Optimization of the trajectory of a general free-flying manipulator during the rendezvous maneuver. Proc AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA-GNC 2008), Honolulu, Hawaii, USA https://doi.org/10.2514/6.2008-7273

  35. Yoshida K., Umetani Y. (1990) Control of space free-flying robot. In: Proc. 29th Conference on Decision and Control, Honolulu, Hawaii, USA https://doi.org/10.1109/CDC.1990.203553

  36. Junkins, J.L., Schaub, H.: An instantaneous eigenstructure quasivelocity formulation for nonlinear multibody dynamics. J. Astronaut. Sci. 45(3), 279–295 (1997). https://doi.org/10.1007/BF03546405

    Article  MathSciNet  Google Scholar 

  37. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996). https://doi.org/10.1007/BF02199365

    Article  MathSciNet  MATH  Google Scholar 

  38. Seweryn, K., Rybus, T., Lisowski, J., Barciński, T., Ciesielska, M., Grassmann, K., Grygorczuk, J., Krzewski, M., Kuciński, T., Nicolau-Kukliński, J., Przybyła, R., Rutkowski, K., Skup, K., Szewczyk, T., Wawrzaszek, R. (2014) The laboratory model of the manipulator arm (WMS1 LEMUR) dedicated for on-orbit operation. In: Proc. 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2014), Saint-Hubert, Quebec, Canada

  39. Oleś, J., Kindracki, J., Rybus, T., Mężyk, Ł, Paszkiewicz, P., Moczydłowski, R., Barciński, T., Seweryn, K., Wolański, P.: A 2D microgravity test bed for the validation of space robot control algorithms. J. Autom. Mob. Robot. Intell. Syst. 11(2), 95–104 (2017). https://doi.org/10.14313/JAMRIS_2-2017/21

    Article  Google Scholar 

  40. Basmadji, F. L., Chmaj, G., Rybus, T., Seweryn, K.: Microgravity testbed for the development of space robot control systems and the demonstration of orbital maneuvers. In: Proc. of SPIE: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, 111763V, Wilga, Poland (2019) Doi: https://doi.org/10.1117/12.2537981

  41. Rybus, T., Barciński, T., Lisowski, J., Seweryn, K., Nicolau-Kukliński, J., Grygorczuk, J., Krzewski, M., Skup, K., Szewczyk, T., Wawrzaszek, R. (2013) Experimental Demonstration of Singularity Avoidance with Trajectories Based on the Bezier Curves for Free-Floating Manipulator. In: Proc 9th International Workshop on Robot Motion and Control (RoMoCo 2013), Wąsowo, Poland https://doi.org/10.1109/RoMoCo.2013.6614599

  42. Rybus, T., Wojtunik, M., Basmadji, F.L.: Optimal collision-free path planning of a free-floating space robot using spline-based trajectories. Acta Astronaut. 190, 395–408 (2022). https://doi.org/10.1016/j.actaastro.2021.10.012

    Article  Google Scholar 

Download references

Acknowledgements

Karol Seweryn thanks Prof. Krzysztof Tchoń from Wroclaw University of Technology for their fruitful discussions about space robots and nonholonomic systems.

Funding

This research was funded by CBK PAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Seweryn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 21016 kb)

Supplementary file2 (AVI 12992 kb)

Supplementary file3 (AVI 19254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seweryn, K., Basmadji, F.L. & Rybus, T. Space Robot Performance During Tangent Capture of an Uncontrolled Target Satellite. J Astronaut Sci 69, 1017–1047 (2022). https://doi.org/10.1007/s40295-022-00330-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00330-2

Navigation