Gómez, G., Howell, K., Masdemont, J., Simó, C.: Station-keeping strategies for translunar libration point orbits. Adv. Astronaut. Sci. 99(2), 949–967 (1998)
Google Scholar
Scheeres, D., Hsiao, F., Vinh, N.: Stabilizing motion relative to an unstable orbit: applications to spacecraft formation flight. J. Guid. Contr. Dyn. 26(1), 62–73 (2003). https://doi.org/10.2514/2.5015
Article
Google Scholar
Dunham, D., Jen, S.J., Roberts, C.E., Seacord, Sharer, P.J., Folta, D.C., Muhonen, D.P.: Transfer trajectory design for the soho libration-point mission. In: International Astronautical Congress, 92-0066 (1993)
Farquhar, R.W., Muhonen, D.P., Newman, C.R., Heubergerg, H.S.: Trajectories and orbital maneuvers for the first libration-point satellite. J. Guid. Contr. Dyn. 3(6), 549–554 (1980). https://doi.org/10.2514/3.56034
Article
Google Scholar
Folta, D.C., Woodard, M., Howell, K., Patterson, C., Schlei, W.: Applications of multi-body dynamical environments: the artemis transfer trajectory design. Acta Astronaut. 73, 237–249 (2012). https://doi.org/10.1007/s10509-018-3431-x
Article
Google Scholar
Franz, H., Sharer, P., Ogilvie, K., Desch, M.: Wind nominal mission performance and extended mission design. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA98-4467, pp. 1447–1464. AIAA (1998)
Roberts, C.E.: Long duration lissajous orbit control for the ace sun-earth l1 libration point mission. In: Advances in the Astronautical Sciences, vol. 108, pp. 1447–1464. AAS (2001)
Guzzetti, D., Zimovan, E.M., Howell, K.C., Davis, D.C.: Stationkeeping analysis for spacecraft in lunar near rectilinear halo orbits. In: 27th AAS/AIAA Space Flight Mechanics Meeting, pp. 1–24. AAS Marriott Plaza, Texas (2017)
Hou, X., Liu, L., Tang, J.: Station-keeping of small amplitude motions around the collinear libration point in the real Earth-Moon system. Adv. Space. Res. 47(7), 1127–1134 (2011). https://doi.org/10.1016/j.asr.2010.12.005
Article
Google Scholar
Muralidharan, V., Howell, K.C.: Stationkeeping in Earth-Moon near rectinlinear halo orbits. In: 2020 AAS/AIAA Astrodynamics Specialist Conference. AAS (2020)
Simó, C., Gómez, G., Llibre, J., Martinez, R., Rodriguez, J.: On the optimal station keeping control of halo orbits. Acta Astronaut. 15(6–7), 391–397 (1987). https://doi.org/10.1016/0094-5765(87)90175-5
Article
Google Scholar
Zhang, H., Li, S.: Station-keeping of libration point orbits by means of projecting to the manifolds. Acta Astronaut. 163, 38–44 (2019). https://doi.org/10.1016/j.actaastro.2018.12.002
Article
Google Scholar
Howell, K.C., Pernicka, H.J.: Stationkeeping method for libration point trajectories. J. Guid. Contr. Dyn. 16(1), 151–159 (1993). https://doi.org/10.2514/3.11440
Article
Google Scholar
Qi, Y., de Ruiter, A.: Station-keeping strategy for real translunar libration point orbits using continuous thrust. Aerosp. Sci. Technol. 94, 105376 (2019). https://doi.org/10.1016/j.ast.2019.105376
Article
Google Scholar
Shirobokov, M., Trofimov, S., Ovchinnikov, M.: Survey of station-keeping techniques for libration point orbits. J. Guid. Contr. Dyn. 40(5), 1085–1105 (2017)
Article
Google Scholar
Ulybyshev, Y.: Long-term station keeping of space station in lunar halo orbits. J. Guid. Contr. Dyn. 38(6), 1063–1070 (2015)
Article
Google Scholar
Akiyama, Y., Bando, M., Hokamoto, S.: Station-keeping and formation flying based on nonlinear output regulation theory. Acta Astronaut. 153, 289–296 (2018). https://doi.org/10.1016/j.actaastro.2018.02.004
Article
Google Scholar
Rish, I., Cecchi, G.A., Lozano, A., Niculescu-Mizil, A.: Practical applications of sparse modeling. MIT Press (2014)
Rish, I., Grabarnik, G.: Sparse modeling: Theory, algorithms, and applications. CRC Press (2014)
Nagahara, M., Ostergaard, J., Queved, D.E.: Discrete-time hands-off control by sparse optimization. EURASIP J. Adv. Signal Process. 76, 1–8 (2016). https://doi.org/10.1186/s13634-016-0372-9
Article
Google Scholar
Nagahara, M., Quevedo, D.E., Nesic, D.: Maximum hands-off control: a paradigm of control effort minimization. IEEE Trans. Automat. Contr. 61(3), 735–747 (2016). https://doi.org/10.1109/TAC.2015.2452831
MathSciNet
Article
MATH
Google Scholar
Nagahara, M.: Sparsity methods for systems and control. Now Publishers, Boston-Delft (2000). https://doi.org/10.1561/9781680837254
Blackmore, L., Acikmese, B., Scharf, D.P.: Minimum-landing-error powered-descent guidance for mars landing using convex optimization. J. Guid. Contr. Dyn. 33(4), 1161–1171 (2010). https://doi.org/10.2514/1.47202
Article
Google Scholar
Eren, U., Dueri, D., Acikmese, B.: Constrained reachability and controllability sets for planetary precision landing via convex optimization. J. Guid. Contr. Dyn. 38(11), 2067–2083 (2015). https://doi.org/10.2514/1.G000882
Article
Google Scholar
Liu, X., Lu, P., Pan, B.: Survey of convex optimization for aerospace applications. Astrodynamics 1(1), 23–40 (2017). https://doi.org/10.1007/s42064-017-0003-8
Article
Google Scholar
Morgan, D., Chung, S.J., Hadaegh, F.Y.: Model predictive control of swarms of spacecraft using sequential convex programming. J. Guid. Contr. Dyn. 37(6), 1725–1740 (2014). https://doi.org/10.2514/1.G000218
Article
Google Scholar
Sagliano, M.: Pseudospectral convex optimization for powered descent and landing. J. Guid. Contr. Dyn. 41(2), 320–334 (2018). https://doi.org/10.2514/1.G002818
Article
Google Scholar
Shi, R., Long, T., Baoyin, H.: Multi-fidelity and multi-objective optimization of low-thrust transfers with control strategy for all-electric geostationary satellites. Acta Astronaut. 177, 577–587 (2020). https://doi.org/10.1016/j.actaastro.2020.08.013
Article
Google Scholar
Wang, Z., Grant, M.J.: Minimum-fuel low-thrust transfers for spacecraft: a convex approach. IEEE Trans. Aerosp. Electron. Syst. 54(5), 2274–2290 (2018). https://doi.org/10.1109/TAES.2018.2812558
Article
Google Scholar
Cobos, J., Masdemont, J.J.: Astrodynamical applications of invariant manifolds associated with collinear Lissajous libration orbits. In: Libration Point Orbits and Applications, pp. 253–268. World Scientific (2003)
Montagnier, P., Paige, C.C., Spiteri, R.J.: Real Floquet factors of linear time-periodic systems. Syst. Contr. Lett. 50(4), 251–262 (2003). https://doi.org/10.1016/S0167-6911(03)00158-0
MathSciNet
Article
MATH
Google Scholar
Grant, M., Boyd, S., Ye, Y.: CVX: Matlab software for disciplined convex programming (2009)
Bando, M., Scheeres, D.J.: Attractive sets to unstable orbits using optimal feedback control. J. Guid. Contr. Dyn. 39(12), 2725–2739 (2016). https://doi.org/10.2514/1.G000524
Article
Google Scholar
Howell, K.C., Marchand, B.G.: Natural and non-natural spacecraft formations near the l1 and l2 libration points in the Sun-Earth/Moon ephemeris system. Dyn. Syst. 20(1), 149–173 (2005)
MathSciNet
Article
Google Scholar
Bando, M., Ichikawa, A.: Formation flying along halo orbit of circular-restricted three-body problem. J. Guid. Contr. Dyn. 38(1), 123–129 (2015)
Article
Google Scholar
Fairman, F.W.: Linear control theory: the state space approach, chap. 2, pp. 186–189 John Wiley & Sons (1998)