Skip to main content
Log in

Analysis of Angles-Only Hybrid Space-Based/Ground-Based Approach for Geosynchronous Orbit Catalog Maintenance

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Geosynchronous Equatorial Orbit (GEO) is critical to Earth communications, weather monitoring, and national defense. Orbit estimation of GEO objects is difficult due to physical constraints placed on ground-based tracking devices such as weather, object range, lighting conditions and tracking frequency restrictions. These constraints are commonly mitigated through the use of two-way signaling devices for cooperative GEO satellites. However, determining the position and velocity of uncooperative GEO satellites and/or objects is more challenging. The objective of this paper is to develop an efficient tool to quantify the increased orbit determination accuracy of objects in the GEO catalog when the Air Force Space Command Space Surveillance Network (AFSPC SSN) is augmented with space-based angles-only measurements from a sensor in a unique near-GEO orbit. To accomplish this, a linear covariance tool is developed and validated by Monte Carlo analysis over a range of problem parameters. It is shown that linear covariance analysis is an efficient approach in determining the covariance of the position and velocity estimation errors of an uncooperative GEO object. Additionally, the linear covariance tool is used to perform error budget analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vallado, D., Lowe, J., Anderson, J.: Benefits of hosted payload architectures for improved GEO SSA. In: Advanced Maui Optical and Space Surveillance Technologies Conference (2011)

  2. Lowe, J., Vallado, D., Hall, B.: Technical analysis of commercially hosted optical payloads for enhanced SSA. In: Advanced Maui Optical and Space Surveillance Technologies Conference (2010)

  3. Byrne, R., Griesmeyer, M., Schmidt, R., Shaddix, J., Bodette, D.: Benefits of a geosynchronous orbit (GEO) observation point for orbit determination, Tech. Rep. DTIC Document (2011)

  4. Stokes, G., von Braun, C., Sridharan, R., Sharma, J.: The space-based visible program. Lincoln Lab. J. 11(2), 205–238 (1998)

  5. Sharma, J., Stokes, G.H., von Braun, C., Zollinger, G., Wiseman, A.J.: Toward operational space-based space surveillance. Lincoln Lab. J. 13(2), 309–334 (2002)

    Google Scholar 

  6. Space Based Space Surveillance: http://www.afspc.af.mil/About-Us/Fact-Sheets/Article/249017/space-based-space-surveillance-sbss/. (2017). Accessed 10 May 2017

  7. Bhaskaran, S., Desai, S., Dumont, P., Kennedy, B., Null, G., Owen, W., Riedel, J., Synnott, S., Werner, R.: Orbit determination performance evaluation of the Deep Space 1 autonomous navigation system. AIAA/AAS Space Flight Mechanics Meeting, Monterey, (1998)

  8. Maybeck, P.S.: Stochastic models, estimation, and control, vol. 1. Academic Press (1982)

  9. Christensen, R.S., Geller, D.: Linear Covariance techniques for closed-loop guidance navigation and control system design and analysis. J. Aerospace Eng. 228(1), 44–65 (2014)

  10. Sharma, J.: Space-based visible space surveillance performance. J. Guid. Contr. Dyn. 23(1), 153–158 (2000)

    Article  Google Scholar 

  11. Faccenda, W.J., Ferris, D., Williams, C.M., Brisnehan, D.: Deep Stare technical advancements and status. In: AMOS 2003 Technical Conference Proceedings (Advanced Maui Optical and Space Surveillance Technologies Conference), Maui Economic Development Board, Inc. Maui, HI (2003)

  12. von Braun, C., Sharma, J., Gaposchkin, E.M.: Space-based visible metric accuracy. J. Guid. Contr. Dyn. 23(1), 175–181 (2000)

    Article  Google Scholar 

  13. Curtis, H.D.: Orbital mechanics for engineering students. 2nd edn. Butterworth-Heinemann (2013)

  14. Montenbruck, O., Gill, E.: Satellite Orbits. Models, Methods and Applications. Springer, Heidelberg (2000)

    Google Scholar 

  15. Vallado, D.A.: Fundamentals of Astrodynamics and Applications. 4th edn. Microcosm Press (2013)

  16. Roithmayr, C.M.: Contributions of spherical harmonics to magnetic and gravitational fields. Tech. Rep. NASA/TM-2004-213007, L-18358, NASA Langley Research Center, Hampton, VA (2004)

  17. Mueller, A.: A Fast recursive algorithm for calculating the forces due to the geopotential (Program: GEOPOT). Tech. Rep. JSC Internal Note 75-FM-42 (JSC-09731), NASA (1975)

  18. Lear, W.M.: Kalman filtering techniques. Tech. Rep. JSC-20688, NASA Johnson Space Center, Houston, Texas (1985)

  19. Andrews, S.E. (ed.): Proceedings of the 2000 Space Control Conference: Tech. Rep. STK-255, Massachusetts Institute of Technology Lexington Lincoln Lab (2000)

  20. Schildknecht, T., Früh, C., Herzog, A., Hinze, J., Vananti, A.: AIUB efforts to survey, track, and characterize small-size objects at high altitudes. In: Proceedings of 2010 AMOS Technical Conference, pp. 14–17 (2010)

  21. CubeSat design specification rev. 13: Tech. Rep. Cal Poly San Luis Obispo (2014)

  22. Kreyszig, E.: Advanced engineering mathematics. 8th edn. John Wiley & Sons (1999)

  23. Chapel, J., Stancliffe, D., Bevacqua, T., Winkler, S., Clapp, B., Rood, T., Gaylor, D., Freesland, D., Krimchansky, A.: Guidance, navigation, and control performance for the GOES-R spacecraft, Tech. Rep. GSFC-E-DAA-TN19917, NASA Goddard Space Flight Center; Greenbelt, MD (2014)

  24. Abbot, R.I., Gaposchkin, E.M., Braun, C.V.: Midcourse Space Experiment Precision Ephemeris. J. Guid. Contr. Dyn. 23(1), 186–190 (2000)

    Article  Google Scholar 

  25. Swedish Space Corporation Universal Space Network: http://www.sscspace.com/Products-Services/satellitemanagementservices/ground-network-prioranet-1. (2017). Accessed 10 March 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Geller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, B.A., Geller, D.K. Analysis of Angles-Only Hybrid Space-Based/Ground-Based Approach for Geosynchronous Orbit Catalog Maintenance. J Astronaut Sci 69, 473–510 (2022). https://doi.org/10.1007/s40295-022-00313-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00313-3

Navigation