Skip to main content
Log in

Time-Varying Shadows of Quasi-Periodic Motion Across Sections of the Flow Within Nearly Time-Periodic Three-Body Dynamics

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Quasi-periodic behavior underlying gravitational three-body dynamics may supply naturally bounded reference trajectories to control spacecraft motion. To insert or maintain a spacecraft into bounded motion that resembles quasi-periodic behavior, guidance algorithms may require target position and velocity values, potentially at a fixed epoch. Within lower fidelity models that are autonomous, Poincaré maps are a particularly effective tool to identify target conditions for nearly quasi-periodic motion; however, challenges remain in transitioning the application of Poincaré maps to higher fidelity models that are nearly time-periodic. In fact, Poincaré maps are often visualized in lower dimensional spaces for inspection; such visualizations do not often supply a static and comprehensive description for the underlying dynamical structures, when dynamics are nearly time-periodic. In this work, we explore a framework to facilitate the interpretation of Poincaré map patterns associated with epoch-dependent solutions and states that are projected to lower dimensional position and velocity spaces. The introduction of chaos indicators may reveal regions of the projection that produce bounded motion as a function of the given epoch and/or initial state perturbation. Within precisely time-periodic systems, these regions may be the image, or shadow, of underlying torus manifolds. In the Poisson sense, shadows of quasi-periodic motion may be considered regions of stability within the lower dimensional space. Within the projection space, chaos indicators may capture time variations of a reference shadow or reveal special perturbation patterns. The framework is presented in two case studies: the first study demonstrates application within binary asteroid dynamics that are precisely time-periodic; the second study demonstrates application within nearly time-periodic dynamics (i.e., an ephemeris representation of the Earth-Moon system), when solutions resemble quasi-periodic motion only over finite time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. currently renamed Artemis-I

References

  1. Arnold, V.: Proof of a theorem of A. N. kolmogorov on the invariance of quasi-periodic motions under small perturbations of the hamiltonian. Russian Mathematical Surveys 18(5), 9–36 (1963). https://doi.org/10.1070/rm1963v018n05abeh004130

    Article  Google Scholar 

  2. Barden, B., Howell, K.: Fundamental motions near collinear libration points and their transitions. Journal of the Astronautical Sciences 46(4), 361–378 (1998)

    Article  MathSciNet  Google Scholar 

  3. Baresi, N., Olikara, Z., Scheeres, D.: Survey of numerical methods to compute quasi-periodic invariant tori in astrodynamics. In: AAS/AIAA Space Flight Mechanics Meeting, Napa, California, February (2016)

  4. Baresi, N., Scheeres, D.: Quasi-periodic invariant tori of time-periodic dynamical systems: Applications to small body exploration. In: 67Th International Astronautical Congress, Guadalajara, Mexico, September (2016)

  5. Bennett, C., Bay, M., Halpern, M., Hinshaw, G., Jackson, C., Jarosik, N., Kogut, A., Limon, M., Meyer, S., Page, L., Spergel, D., Tucker, G., Wilkinson, D., Wollack, E., Wright, E.: The Microwave anisotropy probe mission. Astrophys. J. 583(1), 1–23 (2003)

    Article  Google Scholar 

  6. Bester, M., Cosgrove, D., Frey, S., Marchese, J., Burgart, A., Lewis, M., Roberts, B., Thorsness, J., McDonald, J., Pease, D., Picard, G., Eckert, M., Dumlao, R.: ARTEMIS operations - experiences and lessons learned. In: IEEE Aerospace Conference, Big Sky, Montana, March (2014)

  7. Davis, D.C., Phillips, S.M., McCarthy, B.P.: Trajectory design for saturnian ocean worlds orbiters using multidimensional poincaré maps. Acta Astronaut. 143, 16–28 (2018)

    Article  Google Scholar 

  8. Dawn, T., Gutkowski, J., Batcha, A., Pedrotty, S.: Trajectory design considerations for Exploration Mission 1. In: AAS/AIAA Space Flight Mechanics Meeting, Kissimmee, Florida, January. Figure 2 (2018)

  9. Folta, D.C., Pavlak, T.A., Haapala, A.F., Howell, K.C., Woodard, M.A.: Earth–moon libration point orbit stationkeeping: theory, modeling, and operations. Acta Astronaut. 94(1), 421–433 (2014)

    Article  Google Scholar 

  10. Froeschle, C.: Graphical evolution of the Arnold web: from order to chaos. Science 289(5487), 2108–2110 (2000)

    Article  Google Scholar 

  11. Froeschlé, C., Gonczi, R., Lega, E.: The fast Lyapunov indicator: a simple tool to detect weak chaos. Application to the structure of the main asteroidal belt. Planet. Space Sci. 45(7), 881–886 (1997)

    Article  Google Scholar 

  12. Gawlik, E., Marsden, J., Du Toit, P., Campagnola, S.: Lagrangian coherent structures in the planar elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 103(3), 227–249 (2009)

    Article  MathSciNet  Google Scholar 

  13. Geisel, C.: Spacecraft Orbit Design in the Circular Restricted Three-Body Problem Using Higher-Dimensional Poincaré Maps. Ph.D. Dissertation, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana (2013)

  14. Gómez, G., Mondelo, J.: The dynamics around the collinear equilibrium points of the RTBP. Physica D 157(4), 283–321 (2001)

    Article  MathSciNet  Google Scholar 

  15. Grebow, D.J., Ozimek, M.T., Howell, K.C., Folta, D.C.: Multibody orbit architectures for lunar south pole coverage. J. Spacecr. Rocket. 45(2), 344–358 (2008)

    Article  Google Scholar 

  16. Guzzetti, D., Zimovan, E., Howell, K., Davis, D.: Stationkeeping Analysis for Spacecraft in Lunar near Rectilinear Halo Orbits. In: AAS/AIAA Space Flight Mechanics Meeting, San Antonio, Texas, February (2017)

  17. Haapala, A.F., Howell, K.C.: Representations of higher-dimensional poincaré maps with applications to spacecraft trajectory design. Acta Astronaut. 96(March), 23–41 (2014)

    Article  Google Scholar 

  18. Haller, G.: A variational theory of hyperbolic lagrangian coherent structures. Physica D: Nonlinear Phenomena 240(7), 574–598 (2011)

    Article  MathSciNet  Google Scholar 

  19. Hiday, L.: Optimal Transfers between Libration-Point Orbits in the Elliptic Restricted Three-Body Problem. Ph.D. Dissertation, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana (1992)

  20. Howell, K., Pernicka, H.: Numerical determination of lissajous trajectories in the restricted three-body problem. Celest. Mech. 41(1), 107–124 (1988)

    MATH  Google Scholar 

  21. Hussmann, H., Oberst, J., Wickhusen, K., Shi, X., Damme, F., Lüdicke, F., Lupovka, V., Bauer, S.: Stability and evolution of orbits around the binary asteroid 175706 (1996 FG3): Implications for the MarcoPolo-r mission. Planet. Space Sci. 70(1), 102–113 (2012)

    Article  Google Scholar 

  22. Jorba, A.: A numerical study on the existence of stable motions near the triangular points of the real earth-Moon system. A dynamical systems approach to the existence of Trojan motions. Astron. Astrophys. 364(1), 327–338 (2000)

    Google Scholar 

  23. Kolemen, E., Kasdin, J., Gurfil, P.: Quasi-Periodic Orbits of the Restricted Three-Body Problem Made Easy. In: New Trends in Astrodynamics and Applications III, AIP Conference Proceedings, Princeton, New Jersey (2007)

  24. Kolmogorov, A.: On the persistence of conditionally periodic motions under a small change of the Hamilton function. Dokl. Akad. Nauk SSSR, pp. 527–530 (1954)

  25. Larson, W.J., Wertz, J.R.: Space mission analysis and design, 3rd edn. Microcosm, Inc., Torrance, CA (United States) (1992). Figure 2-5

    Book  Google Scholar 

  26. Laskar, J.: The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones. Icarus 88(2), 266–291 (1990)

    Article  Google Scholar 

  27. Laskar, J.: Frequency analysis for multi-dimensional systems. global dynamics and diffusion. Physica D: Nonlinear Phenomena 67(1-3), 257–281 (1993)

    Article  MathSciNet  Google Scholar 

  28. Laskar, J.: Introduction to Frequency Map Analysis, pp 134–150. Springer, Netherlands, Dordrecht (1999)

    MATH  Google Scholar 

  29. Lega, E., Froeschlé, C.: Numerical investigations of the structure around an invariant KAM torus using the frequency map analysis. Physica D: Nonlinear Phenomena 95(2), 97–106 (1996)

    Article  MathSciNet  Google Scholar 

  30. Lo, M., Williams, B., Bollman, W., Han, D., Hahn, Y., Bell, J., Hirst, E., Corwin, R., Hong, P., Howell, K., Barden, B., Wilson, R.: Genesis mission design. The Journal of Astronautical Sciences 49(1), 169–184 (1998)

    Article  Google Scholar 

  31. Morbidelli, A., Guzzo, M.: The Nekhoroshev Theorem and the Asteroid Belt Dynamical System, pp 107–136. Springer, Netherlands, Dordrecht (1997)

    MATH  Google Scholar 

  32. Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachrichten der Akademie der Wissenschaften in göttingen, Mathematisch-Physikalische 1, 1–20 (1962)

    MathSciNet  MATH  Google Scholar 

  33. Olikara, Z., Scheeres, D.: Numerical Method for Computing Quasi-Periodic Orbits and Their Stability in the Restricted Three-Body Problem. In: 1St IAA/AAS Conference on the Dynamics and Control of Space Systems, Porto, Portugal, March (2012)

  34. Pavlak, T.: Mission Design Applications in the Earth-Moon System: Transfer Trajectories and Stationkeeping. M.S. Thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana (2010)

  35. Perezpalau, D., Masdemont, J., Gomez, G.: Tools to detect structures in dynamical systems using jet transport. Celest. Mech. Dyn. Astron. 123 (3), 239–262 (2015)

    Article  MathSciNet  Google Scholar 

  36. Roberts, C.: Long Term Missions at the Sun-Earth Libration Point L1: ACE, SOHO and WIND. In: AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, August (2011)

  37. Robutel, P.: Frequency map and global dynamics in the solar system i short period dynamics of massless particles. Icarus 152(1), 4–28 (2001)

    Article  MathSciNet  Google Scholar 

  38. Robutel, P., Gabern, F., Jorba, A.: The Observed Trojans and the Global Dynamics Around the Lagrangian Points of the Sun-Jupiter System, pp 53–69. Springer, Netherlands, Dordrecht (2005)

    MATH  Google Scholar 

  39. Short, C.: Flow-Informed Strategies for Trajectory Design and Analysis. Ph.D. Dissertation, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana (2016)

  40. Szebehely, V.: Theory of Orbit: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  41. Tricoche, X., Garth, C., Sanderson, A.: Visualization of topological structures in area-preserving maps. IEEE Trans. Vis. Comput. Graph. 17(12), 1765–1774 (2011)

    Article  Google Scholar 

  42. Villac, B.: Using FLI maps for preliminary spacecraft trajectory design in multi-body environments. Celest. Mech. Dyn. Astron. 102(1-3), 29–48 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was completed at Tsinghua University with the support of the 2015 Chinese National Postdoctoral International Exchange Program and the National Natural Science Fund for Distinguished Young Scholars of China (No. 11525208). The authors also would like to thank the anonymous reviewers and Dr. Chappaz for their useful and detailed suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hexi Baoyin.

Ethics declarations

Conflict of Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzzetti, D., Baoyin, H. Time-Varying Shadows of Quasi-Periodic Motion Across Sections of the Flow Within Nearly Time-Periodic Three-Body Dynamics. J Astronaut Sci 68, 855–890 (2021). https://doi.org/10.1007/s40295-021-00284-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-021-00284-x

Keywords

Navigation