Abstract
Objects that have retained pieces of information about the early Solar System are key to our understanding of its formation and evolutionary history. However, the high delta-V required to reach these objects, such as long-period comets or interstellar objects, makes designing an intercept mission at the time of detection impractical. In this paper, we explore multiple heliocentric staging orbits around Lagrange points to serve as departure positions for future missions, prior to objects’ detections. By utilizing more than one staging orbit concurrently, we expand the set of objects that are reachable, therefore increasing mission feasibility. Delta-V maps are generated and superimposed; two-impulse burn trajectories are simulated and compared between the different staging orbits.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
Code Availability
MATLAB and GMAT files fully available upon request
Abbreviations
- au :
-
= Astronomical unit
- C 3 :
-
= Characteristic energy, km2/s2
- Δ V :
-
= Delta-V to achieve desired hyperbolic excess velocity from circular orbit, km/s
- μ s :
-
= Sun’s gravitational parameter, km3/s2
- n J :
-
= Jupiter’s mean motion, rad/s
- Φ o :
-
= Phase angle for Hohmann Transfer, rad
- R E :
-
= Earth’s semimajor axis of orbit, km
- R JL1 :
-
= Sun-Jupiter’s L1 semimajor axis of orbit, km
- t 12 :
-
= Hohmann Transfer time of flight, s
- v c :
-
= Velocity of object in a circular orbit around the Earth, km/s
- \(v_{\infty }\) :
-
= Hyperbolic excess velocity, km/s
References
Meech, K.J., et al.: A brief visit from a red and extremely elongated interstellar asteroid. Nature 552, 378–385 (2017). https://doi.org/10.1038/nature25020
Micheli, M., Farnocchia, D., Meech, K.J., et al.: Non-gravitational acceleration in the trajectory of 1I/2017 U1 (’Oumuamua). Nature 559, 223–226 (2018). https://doi.org/10.1038/s41586-018-0254-4
Gaidos, E., Williams, J.P., Kraus, A.: Origin of interstellar object A/2017 U1 in a nearby young stellar association?, Res. Notes AAS. 1(1) (2017)
Mamajek, E.: Kinematics of the Interstellar Vagabond 1I/’Oumuamua (A/2017 U1), Res. Notes AAS. 1(1) 1-3 (2017)
Do, A., Tucker, M.A., Tonry, J.: Interstellar interlopers: Number density and origin of ‘Oumuamua-like objects. Astrophys. J. 855(1), L10 (2018). https://doi.org/10.3847/2041-8213/aaae67
Seligman, D., Laughlin, G: The feasibility and benefits of in situ exploration of ’Oumuamua-like objects. Astron. J. 155(5), 155–217 (2018). https://doi.org/10.3847/1538-3881/aabd37
de Leon, J., et al.: Interstellar visitors: A physical characterization of comet C/2019 Q4 (Borisov) with OSIRIS at the 10.4m GTC, Research Notes of the American Astronomical Society, 3, Issue 9, article id.131. https://doi.org/10.3847/2515-5172/ab449c (2019)
Guzik, P., Drahus, M., Rusek, K., et al.: Initial characterization of interstellar comet 2I/Borisov. Nat. Astron. 4, 53–57 (2020). https://doi.org/10.1038/s41550-019-0931-8
Bailer-Jones, C.A.L., et al.: A search for the origin of the interstellar comet 2I/Borisov, Astronomy & Astrophysics. 634(A14)1-6. https://doi.org/10.1051/0004-6361/201937231 (2020)
Castillo-Rogez, J.C., Meech, K., Chung, S.-J., Landau, D.: Approach to exploring interstellar objects and long-period comets. In: Proceedings of the AAS/AIAA Space Flight MECHANICS Meeting, vol. 168, AAS, Ka’anapali, HI, 2115 (2019)
Fitzsimmons, A., Snodgrass, C., Rozitis, B., et al.: Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ’Oumuamua. Nat. Astron. 2, 133–137 (2018). https://doi.org/10.1038/s41550-017-0361-4
Siraj, A., Loeb, A.: Identifying interstellar objects trapped in the solar system through their orbital parameters. Astrophys. J. Lett. 872(1)1-6. https://doi.org/10.3847/2041-8213/ab042a (2019)
Curtis, H.D.: Orbital Mechanics for Engineering Students Chap, 3rd ed., vol. 2. Elsevier, Waltham, MA (2014)
Tsuda, Y., Yoshikawa, M., Abe, M., Minamino, H., et al.: System design of the Hayabusa 2 — Asteroid sample return mission to 1999 JU3. Acta Astronaut. 91, 356–362 (2013). https://doi.org/10.1016/j.actaastro.2013.06.028
Perozzi, E., Rossi, A., Valsecchi, G.B.: Basic targeting strategies for rendezvous and flyby missions to the near-Earth asteroids. Planet. Space Sci. 49, 3–22 (2001)
Vardaxis, G., Wie, B.: Asteroid mission design software tool for planetary defense applications. In: AIAA/AAS Astrodynamics Specialist Conference AIAA. 2012-4872, Minneapolis MN. https://doi.org/10.2514/6.2012-4872 (2012)
McMahon, J.W., Scheeres, D.J.: Linearized lambert’s problem solution. J. Guid. Contr. Dyn. 39(10)2205-2218. https://doi.org/10.2514/1.G000394 (2016)
Prussing, J.E., Conway, B.A.: Orbital Mechanics, pp 62–79. Oxford Univ. Press, New York (1993)
Shahid, K., Kumar, K.D.: Nonlinear station-keeping control in the vicinity of the sun-earth l2 point using solar radiation pressure, J. Aerosp. Eng. 29(3). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000553 (2016)
Canalias, E., Gomez, G., Marcote, M., Masdemont, J.: Assessment of mission design including utilization of libration points and weak stability boundaries, Ariadna Id: 03/4103, European Space Agency, Noordwijk, Netherlands (2004)
Hopkins, R.C., Stahl, H.P.: A large monolithic telescope placed at the second sun- earth lagrange point. In: AIAA SPACE 2007 Conference & Exposition, AIAA 2007-6166, Long Beach, California. https://doi.org/10.2514/6.2007-6166 (2007)
Baoyin, H., McInnes, C.R.: Trajectories to and from the lagrange points and the primary body surfaces. J. Guid. Control Dyn. 29(4), 998–1003 (2006). https://doi.org/10.2514/1.17757
Strizzi, J.D., Kutrieb, J.M., Damphousse, P.E., Carrico, J.P.: Sun-mars libration points and mars mission simulations. Adv. Astronaut. Sci. 108, 807–822 (2001)
Burke, L.M., Falck, R.D., McGuire, M.L.: Interplanetary mission design handbook: Earth-to-mars mission opportunities 2026 to 2045, NASA TM-216764 (2010)
Nervold, A., Straub, J., Berk, J., Marsh, R., Kerlin, S.: Interplanetary hitchhiking to support small spacecraft missions beyond earth orbit. In: 64th International Astronautical Congress, IAC-13-B4.5.5, IAF, Beijing, China (2013)
Ono, M., et al.: Comet Hitchhiker: NIAC Phase I Final Report. In: Mission Concept - Pre-decisional - for Planning and Discussion Purposes Only, Jet Propulsion Lab, California Institute of Technology University of California (2015)
Conversano, R.W., Rabinovitch, J., Strange, N.J., Arora, N., Jens, E., Karp, A.C.: SmallSat missions enabled by paired low- thrust hybrid rocket and low-power long-life hall thruster. In: 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2019, pp. 1–8, https://doi.org/10.1109/AERO.2019.8741678 (2019)
Freeman, A.: Exploring our solar system with CubeSats and SmallSats: the dawn of a new era, CEAS Space Journal. https://doi-org.libproxy.library.wmich.edu/10.1007/s12567-020-00298-5 (2020)
Kowalkowski, T.D., Johannesen, J.R., Lam, T.: Launch period development for the juno mission to jupiter. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, CP7369, AIAA, Honolulu HI. https://doi.org/10.2514/6.2008-7369 (2008)
Dones, L., Weissman, P., Levison, H., Duncan, M.: Oort cloud formation and dynamics. In: Star Formation in the Interstellar Medium In Honor of David Hollenbach, Chris McKee and Frank Shu, ASP Conference Proceedings, vol. 323, pp. 371–379 (2004)
Hills, J.G.: Comet showers and the steady-state infall of comets from the oort cloud. Astron. J. 86(11), 1730–1740 (1981)
Levison, H.F., Dones, L., Duncan, M.J.: The Origin of Halley-Type Comets: Probing the Inner Oort Cloud, The Astronomical Journal, 121(4). https://doi.org/10.1086/319943 (2001)
Willman, Jr A.J.: Implications of magnitude distribution comparisons between trans-neptunian objects and comets. In: SpSt997 Independent Study, Department of Space Studies, University of North Dakota, Grand Forks, ND (1995)
Engelhardt, T., Jedicke, R., Vereš, P., et al.: An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets, The Astronomical Journal, 153(3). https://doi.org/10.3847/1538-3881/aa5c8a (2017)
Marceta, D., Novakovic, B.: Retrograde orbits excess among observable interstellar objects. Mon. Not. R. Astron. Soc. 4, 5386–5398 (2020). https://doi.org/10.1093/mnras/staa1378
Hibberd, A., Hein, A.M., Eubanks, T.M.: Project lyra: Catching 1I/’Oumuamua – Mission opportunities after 2024. Acta Astronaut. 170, 136–144 (2020). https://doi.org/10.1016/j.actaastro.2020.01.018
Hein, A.M., Perakis, N., Eubanks, T.M., Hibberd, A., et al.: Project Lyra: sending a spacecraft to 1I/’Oumuamua (former A/2017 U1), the interstellar asteroid. Acta Astronaut. 161, 552–561 (2019). https://doi.org/10.1016/j.actaastro.2018.12.042
Guo, Y., Farquhar, R.W.: New horizons mission design. Space Sci. Rev. 140, 49–74 (2008). https://doi.org/10.1007/s11214-007-9242-y
Stern, S.A., Weaver, H.A., Spencer, J.R., Elliott, H.A.: The new horizons Kuiper belt extended mission, Space Sci. Rev. 214(77). https://doi.org/10.1007/s11214-018-0507-4 (2018)
Wagner, S., Wie, B.: Hybrid algorithm for multiple gravity-assist and impulsive delta-V maneuvers. J. Guid. Control Dyn. 38, 2096–2107 (2015)
Kreitzman, J., Stewart, C.W., Cansler, E., et al.: Mission opportunities to trans-neptunian objects - Part III, orbital capture, low-thrust trajectories and vehicle radiation environment during jovian flyby. In: AIAA Paper 2013-5066, Astrodynamics Specialist Conference, Hilton Head, SC (2013)
Funding
Western Michigan University
Author information
Authors and Affiliations
Corresponding author
Additional information
Availability of Data and Material
fully available upon request
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Vivan, G.P., Hudson, J. Exploring Long-Period Comets from Multiple Staging Orbits. J Astronaut Sci 68, 608–641 (2021). https://doi.org/10.1007/s40295-021-00271-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40295-021-00271-2