Skip to main content
Log in

Exploring Long-Period Comets from Multiple Staging Orbits

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Objects that have retained pieces of information about the early Solar System are key to our understanding of its formation and evolutionary history. However, the high delta-V required to reach these objects, such as long-period comets or interstellar objects, makes designing an intercept mission at the time of detection impractical. In this paper, we explore multiple heliocentric staging orbits around Lagrange points to serve as departure positions for future missions, prior to objects’ detections. By utilizing more than one staging orbit concurrently, we expand the set of objects that are reachable, therefore increasing mission feasibility. Delta-V maps are generated and superimposed; two-impulse burn trajectories are simulated and compared between the different staging orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Code Availability

MATLAB and GMAT files fully available upon request

Abbreviations

au :

= Astronomical unit

C 3 :

= Characteristic energy, km2/s2

Δ V :

= Delta-V to achieve desired hyperbolic excess velocity from circular orbit, km/s

μ s :

= Sun’s gravitational parameter, km3/s2

n J :

= Jupiter’s mean motion, rad/s

Φ o :

= Phase angle for Hohmann Transfer, rad

R E :

= Earth’s semimajor axis of orbit, km

R JL1 :

= Sun-Jupiter’s L1 semimajor axis of orbit, km

t 12 :

= Hohmann Transfer time of flight, s

v c :

= Velocity of object in a circular orbit around the Earth, km/s

\(v_{\infty }\) :

= Hyperbolic excess velocity, km/s

References

  1. Meech, K.J., et al.: A brief visit from a red and extremely elongated interstellar asteroid. Nature 552, 378–385 (2017). https://doi.org/10.1038/nature25020

    Article  Google Scholar 

  2. Micheli, M., Farnocchia, D., Meech, K.J., et al.: Non-gravitational acceleration in the trajectory of 1I/2017 U1 (’Oumuamua). Nature 559, 223–226 (2018). https://doi.org/10.1038/s41586-018-0254-4

    Article  Google Scholar 

  3. Gaidos, E., Williams, J.P., Kraus, A.: Origin of interstellar object A/2017 U1 in a nearby young stellar association?, Res. Notes AAS. 1(1) (2017)

  4. Mamajek, E.: Kinematics of the Interstellar Vagabond 1I/’Oumuamua (A/2017 U1), Res. Notes AAS. 1(1) 1-3 (2017)

  5. Do, A., Tucker, M.A., Tonry, J.: Interstellar interlopers: Number density and origin of ‘Oumuamua-like objects. Astrophys. J. 855(1), L10 (2018). https://doi.org/10.3847/2041-8213/aaae67

    Article  Google Scholar 

  6. Seligman, D., Laughlin, G: The feasibility and benefits of in situ exploration of ’Oumuamua-like objects. Astron. J. 155(5), 155–217 (2018). https://doi.org/10.3847/1538-3881/aabd37

    Article  Google Scholar 

  7. de Leon, J., et al.: Interstellar visitors: A physical characterization of comet C/2019 Q4 (Borisov) with OSIRIS at the 10.4m GTC, Research Notes of the American Astronomical Society, 3, Issue 9, article id.131. https://doi.org/10.3847/2515-5172/ab449c (2019)

  8. Guzik, P., Drahus, M., Rusek, K., et al.: Initial characterization of interstellar comet 2I/Borisov. Nat. Astron. 4, 53–57 (2020). https://doi.org/10.1038/s41550-019-0931-8

    Article  Google Scholar 

  9. Bailer-Jones, C.A.L., et al.: A search for the origin of the interstellar comet 2I/Borisov, Astronomy & Astrophysics. 634(A14)1-6. https://doi.org/10.1051/0004-6361/201937231 (2020)

  10. Castillo-Rogez, J.C., Meech, K., Chung, S.-J., Landau, D.: Approach to exploring interstellar objects and long-period comets. In: Proceedings of the AAS/AIAA Space Flight MECHANICS Meeting, vol. 168, AAS, Ka’anapali, HI, 2115 (2019)

  11. Fitzsimmons, A., Snodgrass, C., Rozitis, B., et al.: Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ’Oumuamua. Nat. Astron. 2, 133–137 (2018). https://doi.org/10.1038/s41550-017-0361-4

    Article  Google Scholar 

  12. Siraj, A., Loeb, A.: Identifying interstellar objects trapped in the solar system through their orbital parameters. Astrophys. J. Lett. 872(1)1-6. https://doi.org/10.3847/2041-8213/ab042a (2019)

  13. Curtis, H.D.: Orbital Mechanics for Engineering Students Chap, 3rd ed., vol. 2. Elsevier, Waltham, MA (2014)

  14. Tsuda, Y., Yoshikawa, M., Abe, M., Minamino, H., et al.: System design of the Hayabusa 2 — Asteroid sample return mission to 1999 JU3. Acta Astronaut. 91, 356–362 (2013). https://doi.org/10.1016/j.actaastro.2013.06.028

    Article  Google Scholar 

  15. Perozzi, E., Rossi, A., Valsecchi, G.B.: Basic targeting strategies for rendezvous and flyby missions to the near-Earth asteroids. Planet. Space Sci. 49, 3–22 (2001)

    Article  Google Scholar 

  16. Vardaxis, G., Wie, B.: Asteroid mission design software tool for planetary defense applications. In: AIAA/AAS Astrodynamics Specialist Conference AIAA. 2012-4872, Minneapolis MN. https://doi.org/10.2514/6.2012-4872 (2012)

  17. McMahon, J.W., Scheeres, D.J.: Linearized lambert’s problem solution. J. Guid. Contr. Dyn. 39(10)2205-2218. https://doi.org/10.2514/1.G000394 (2016)

  18. Prussing, J.E., Conway, B.A.: Orbital Mechanics, pp 62–79. Oxford Univ. Press, New York (1993)

    MATH  Google Scholar 

  19. Shahid, K., Kumar, K.D.: Nonlinear station-keeping control in the vicinity of the sun-earth l2 point using solar radiation pressure, J. Aerosp. Eng. 29(3). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000553 (2016)

  20. Canalias, E., Gomez, G., Marcote, M., Masdemont, J.: Assessment of mission design including utilization of libration points and weak stability boundaries, Ariadna Id: 03/4103, European Space Agency, Noordwijk, Netherlands (2004)

  21. Hopkins, R.C., Stahl, H.P.: A large monolithic telescope placed at the second sun- earth lagrange point. In: AIAA SPACE 2007 Conference & Exposition, AIAA 2007-6166, Long Beach, California. https://doi.org/10.2514/6.2007-6166 (2007)

  22. Baoyin, H., McInnes, C.R.: Trajectories to and from the lagrange points and the primary body surfaces. J. Guid. Control Dyn. 29(4), 998–1003 (2006). https://doi.org/10.2514/1.17757

    Article  Google Scholar 

  23. Strizzi, J.D., Kutrieb, J.M., Damphousse, P.E., Carrico, J.P.: Sun-mars libration points and mars mission simulations. Adv. Astronaut. Sci. 108, 807–822 (2001)

    Google Scholar 

  24. Burke, L.M., Falck, R.D., McGuire, M.L.: Interplanetary mission design handbook: Earth-to-mars mission opportunities 2026 to 2045, NASA TM-216764 (2010)

  25. Nervold, A., Straub, J., Berk, J., Marsh, R., Kerlin, S.: Interplanetary hitchhiking to support small spacecraft missions beyond earth orbit. In: 64th International Astronautical Congress, IAC-13-B4.5.5, IAF, Beijing, China (2013)

  26. Ono, M., et al.: Comet Hitchhiker: NIAC Phase I Final Report. In: Mission Concept - Pre-decisional - for Planning and Discussion Purposes Only, Jet Propulsion Lab, California Institute of Technology University of California (2015)

  27. Conversano, R.W., Rabinovitch, J., Strange, N.J., Arora, N., Jens, E., Karp, A.C.: SmallSat missions enabled by paired low- thrust hybrid rocket and low-power long-life hall thruster. In: 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2019, pp. 1–8, https://doi.org/10.1109/AERO.2019.8741678 (2019)

  28. Freeman, A.: Exploring our solar system with CubeSats and SmallSats: the dawn of a new era, CEAS Space Journal. https://doi-org.libproxy.library.wmich.edu/10.1007/s12567-020-00298-5 (2020)

  29. Kowalkowski, T.D., Johannesen, J.R., Lam, T.: Launch period development for the juno mission to jupiter. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, CP7369, AIAA, Honolulu HI. https://doi.org/10.2514/6.2008-7369 (2008)

  30. Dones, L., Weissman, P., Levison, H., Duncan, M.: Oort cloud formation and dynamics. In: Star Formation in the Interstellar Medium In Honor of David Hollenbach, Chris McKee and Frank Shu, ASP Conference Proceedings, vol. 323, pp. 371–379 (2004)

  31. Hills, J.G.: Comet showers and the steady-state infall of comets from the oort cloud. Astron. J. 86(11), 1730–1740 (1981)

    Article  Google Scholar 

  32. Levison, H.F., Dones, L., Duncan, M.J.: The Origin of Halley-Type Comets: Probing the Inner Oort Cloud, The Astronomical Journal, 121(4). https://doi.org/10.1086/319943 (2001)

  33. Willman, Jr A.J.: Implications of magnitude distribution comparisons between trans-neptunian objects and comets. In: SpSt997 Independent Study, Department of Space Studies, University of North Dakota, Grand Forks, ND (1995)

  34. Engelhardt, T., Jedicke, R., Vereš, P., et al.: An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets, The Astronomical Journal, 153(3). https://doi.org/10.3847/1538-3881/aa5c8a (2017)

  35. Marceta, D., Novakovic, B.: Retrograde orbits excess among observable interstellar objects. Mon. Not. R. Astron. Soc. 4, 5386–5398 (2020). https://doi.org/10.1093/mnras/staa1378

    Article  Google Scholar 

  36. Hibberd, A., Hein, A.M., Eubanks, T.M.: Project lyra: Catching 1I/’Oumuamua – Mission opportunities after 2024. Acta Astronaut. 170, 136–144 (2020). https://doi.org/10.1016/j.actaastro.2020.01.018

    Article  Google Scholar 

  37. Hein, A.M., Perakis, N., Eubanks, T.M., Hibberd, A., et al.: Project Lyra: sending a spacecraft to 1I/’Oumuamua (former A/2017 U1), the interstellar asteroid. Acta Astronaut. 161, 552–561 (2019). https://doi.org/10.1016/j.actaastro.2018.12.042

    Article  Google Scholar 

  38. Guo, Y., Farquhar, R.W.: New horizons mission design. Space Sci. Rev. 140, 49–74 (2008). https://doi.org/10.1007/s11214-007-9242-y

    Article  Google Scholar 

  39. Stern, S.A., Weaver, H.A., Spencer, J.R., Elliott, H.A.: The new horizons Kuiper belt extended mission, Space Sci. Rev. 214(77). https://doi.org/10.1007/s11214-018-0507-4 (2018)

  40. Wagner, S., Wie, B.: Hybrid algorithm for multiple gravity-assist and impulsive delta-V maneuvers. J. Guid. Control Dyn. 38, 2096–2107 (2015)

    Article  Google Scholar 

  41. Kreitzman, J., Stewart, C.W., Cansler, E., et al.: Mission opportunities to trans-neptunian objects - Part III, orbital capture, low-thrust trajectories and vehicle radiation environment during jovian flyby. In: AIAA Paper 2013-5066, Astrodynamics Specialist Conference, Hilton Head, SC (2013)

Download references

Funding

Western Michigan University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Prescinotti Vivan.

Additional information

Availability of Data and Material

fully available upon request

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivan, G.P., Hudson, J. Exploring Long-Period Comets from Multiple Staging Orbits. J Astronaut Sci 68, 608–641 (2021). https://doi.org/10.1007/s40295-021-00271-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-021-00271-2

Keywords

Navigation