Skip to main content
Log in

Observability and Estimability Analysis of Geosynchronous Objects with Angles-Only Measurements

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

With easier access to space and mega-constellation plans, tracking the resident space object (RSO) population becomes a greater challenge. Efficiently obtaining the maximum possible knowledge from each RSO observation is required for improved propagation and identification. Observability and estimability have been used to mathematically define which parameters of a dynamical system can be determined with certain measurement types and to interpret how well the states are or can be estimated relative to one another. This work analyzes both observability, in a deterministic and in a stochastic sense, and estimability as measures to judge either a priori or a posteriori estimation results. The system of interest in this work is an RSO orbit with object characteristic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Ablin H.L.: Criteria for degree of observability in a control system (1967)

  2. Aoki, M.: On observability of stochastic discrete-time dynamic systems. J. Frankl. Inst. 286(1), 36–58 (1968)

    Article  Google Scholar 

  3. Bageshwar, V.L., Gebre-Egziabher, D., Garrard, W.L., Georgiou, T.T.: Stochastic observability test for discrete-time Kalman filters. J. Guid. Control Dynam. 32(4), 1356–1370 (2009)

    Article  Google Scholar 

  4. Baram, Y., Kailath, T.: Estimability and regulability of linear systems. IEEE T. Automat. Contr. 33(12), 1116–1121 (1988)

    Article  MathSciNet  Google Scholar 

  5. Bay, J.S.: Fundamentals of linear state space systems. 1st edn. McGraw-Hill Science/Engineering/Math (1998)

  6. Beutler, G.: Methods of celestial mechanics. Vol. II : Application to Planetary System Geodynamics and Satellite Geodesy, vol. 2. Springer, Heidelberg (2005)

    Book  Google Scholar 

  7. Brown, R.G.: Not just observable, but how observable/ques/(Observability and controllability in providing heuristic understanding of control problems, noting Kalman filter theory). In: 22nd National Electronics Conference, pp 709–714. IL, Chicago (1966)

  8. Chen, Z.: Local observability and its application to multiple measurement estimation. IEEE T. Ind. Electron. 38(6), 491–496 (1991)

    Article  Google Scholar 

  9. Dianetti, A.D., Weisman, R.M., Crassidis, J.L.: Application of observability analysis to space object tracking. In: AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum American Institute of Aeronautics and Astronautics (2017), https://doi.org/10.2514/6.2017-1258

  10. Eapen R.T., Frueh C.: Averaged solar radiation pressure modeling for high area-to-mass ratio objects in geosynchronous orbits. Adv. Space Res. 62(1), 127–141 (2018). https://doi.org/10.1016/j.asr.2018.03.042https://doi.org/10.1016/j.asr.2018.03.042

    Article  Google Scholar 

  11. Früh, C., Jah, M.K.: Coupled orbit–attitude motion of high area-to-mass ratio (hamr) objects including efficient self-shadowing. Acta Astronaut. 95, 227–241 (2014). https://doi.org/10.1016/j.actaastro.2013.11.017https://doi.org/10.1016/j.actaastro.2013.11.017

    Article  Google Scholar 

  12. Friedman, A.M.: Observability analysis for space situational awareness. PhD Thesis, Purdue University (2020)

  13. Friedman, A.M., Frueh, C.: Determining characteristics of artificial near-Earth objects using observability analysis. Acta Astronaut. 144, 405–421 (2018)

    Article  Google Scholar 

  14. Friedman, A.M., Frueh, C.: Observability of Light Curve Inversion for Shape and Feature Determination Exemplified by a Case Analysis. J. Astronaut. Sci. submitted (2020)

  15. Früh, C., Schildknecht, T.: Variation of the area-to-mass ratio of high area-to-mass ratio space debris objects. Mon. Not. R. Astron. Soc. 419 (4), 3521–3528 (2012)

    Article  Google Scholar 

  16. Gajic, Z., Lelic, M.: Modern control systems engineering. Prentice-Hall, Inc, Hoboken (1997)

    Google Scholar 

  17. Ge, Q., Ma, J., Chen, S., Wang, Y., Bai, L.: Observable degree analysis to match estimation performance for wireless tracking networks. Asian. J. Control 19(4), 1259–1270 (2016). https://doi.org/10.1002/asjc.1386

    Article  MathSciNet  MATH  Google Scholar 

  18. Geeraert, J., McMahon, J.W., Jones, B.A.: Orbit Determination Observability of the Dual-Satellite Geolocation System with TDOA and FDOA. In: AIAA/AAS Astrodynamics Specialist Conference, p 5367 (2016)

  19. Goshen-Meskin, D., Bar-Itzhack, I.Y.: On the connection between estimability and observability. IEEE T. Automat. Contr. 37(8), 1225–1226 (1992). https://doi.org/10.1109/9.151112

    Article  MathSciNet  MATH  Google Scholar 

  20. Ham, F.M.: Determination of the degree of observability in linear control systems (1980)

  21. Ham, F.M., Brown, R.G.: Observability, eigenvalues, and kalman filtering. IEEE T. Aero. Elec. Sys. AES-19(2), 269–273 (1983). https://doi.org/10.1109/TAES.1983.309446

    Article  Google Scholar 

  22. Hermann, R., Krener, A.: Nonlinear controllability and observability. IEEE T. Automat. Contr. 22(5), 728–740 (1977). https://doi.org/10.1109/TAC.1977.1101601

    Article  MathSciNet  MATH  Google Scholar 

  23. Hong, S., Chun, H.H., Kwon, S.H., Lee, M.H.: Observability Measures and Their Application to GPS/INS. IEEE T. Veh. Technol. 57(1), 97–106 (2008). https://doi.org/10.1109/TVT.2007.905610

    Article  Google Scholar 

  24. Huxel, P.J.: Navigation algorithms and observability analysis for formation flying missions (2006)

  25. Jazwinski, A.H.: Stochastic processes and filtering theory. Academic Press, Cambridge (1970)

    MATH  Google Scholar 

  26. Kalman, R.: On the general theory of control systems. IRE T. Autom. Control. 4(3), 110–110 (1959). https://doi.org/10.1109/TAC.1959.1104873

    Article  Google Scholar 

  27. Lang, D., Hogg, D.W., Mierle, K., Blanton, M., Roweis, S.: Astrometry.net: Blind astrometric calibration of arbitrary astronomical images. Astron. J. 137, 1782–2800 (2010)

    Article  Google Scholar 

  28. Lee, M.H., Park, W.C., Lee, K.S., Hong, S., Park, H.G., Chun, H.H., Harashima, F.: Observability analysis techniques on inertial navigation systems. J. Sys. Des. Dyn. 6, 28–44 (2012). https://doi.org/10.1299/jsdd.6.28

    Article  Google Scholar 

  29. List, B.: Decomposition of a covariance matrix into uncorrelated and correlated errors. In: Alliance Workshop on Unfolding and Data Correction (2010)

  30. Longman, R., Sirlin, S.: The fundamental structure of degree of controllability and degree of observability. In: Astrodynamics Conference, p 1434 (1982)

  31. Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods, and Applications. Springer Science & Business Media, Heidelberg (2000)

    Book  Google Scholar 

  32. Morales, J.J.: Stochastic observability and uncertainty characterization in simultaneous receiver and transmitter localization. IEEE Transactions on Aerospace and Electronic Systems 9 (2017)

  33. Ogata, K.: State Space Analysis of Control Systems. Prentice-Hall, Hoboken (1967)

    MATH  Google Scholar 

  34. Pelton, J.N.: Tracking of Orbital Debris and Avoidance of Satellite Collisions. In: Pelton, J.N., Madry, S., Camacho-Lara, S (eds.) Handbook of Satellite Applications, pp 1–13. Springer, New York (2016)

  35. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes 3rd edition: The art of scientific computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  36. Rodriguez, H., Abercromby, K., Mulrooney, M., Barker, E.: Optical properties of multi-layered insulation. In: Advanced Maui Optical and Space Surveillance Technologies Conference (2007)

  37. Rothman, Y., Klein, I., Filin, S.: Analytical observability analysis of INS with vehicle constraints. Navigation 61(3), 227–236 (2014). https://doi.org/10.1002/navi.63

    Article  Google Scholar 

  38. Sanson, F., Frueh, C.: Quantifying uncertainties in signal position in non-resolved object images: Application to space object observation (2019)

  39. Schmidt, S.F.: Application of state-space methods to navigation problems. In: Advances in control systems. 3rd edn., pp 293–340. Elsevier (1966)

  40. Shao, Y.: Observability and performance analysis of integrated GPS/INS navigation systems (2006)

  41. Silva, F.O., Hemerly, E.M., Leite Filho, W.C.: On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters–Part II: Observability/Estimability Analysis. Sensors (Basel, Switzerland). 17(3) https://doi.org/10.3390/s17030439, 28241494 (2017)

  42. Straub, J.: Cubesats: A low-cost, very high-return space technology (2012)

  43. Tapley, B.D., Schutz, B.E., Born G.H.: Statistical Orbit Determination. Academic Press, Cambridge (2004)

    Google Scholar 

  44. Vallado, D.A.: Fundamentals of astrodynamics and applications. Springer Science & Business Media, Heidelberg (2001)

    MATH  Google Scholar 

  45. Woodbury, D., Junkins, J.: On the consider kalman filter. In: AIAA Guidance Navigation, and Control Conference (2010)

Download references

Acknowledgments

This work was funded through the Department of Defense Science, Mathematics And Research for Transformation (SMART) Scholarship-for-Service Program. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Air Force, the Department of Defense, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex M. Friedman.

Ethics declarations

Conflict of Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, A.M., Frueh, C. Observability and Estimability Analysis of Geosynchronous Objects with Angles-Only Measurements. J Astronaut Sci 68, 503–534 (2021). https://doi.org/10.1007/s40295-021-00261-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-021-00261-4

Keywords

Navigation