Skip to main content

Generalized Composite Noncertainty-Equivalence Adaptive Control of Orbiting Spacecraft in Vicinity of Asteroid

Abstract

The paper presents composite noncertainty-equivalence adaptive control (NCEA) systems for the closed orbit and hovering control of spacecraft in the vicinity of a uniformly rotating asteroid. In this study, the asteroid’s mass and moment of inertia matrix, and the mass of the spacecraft are treated as unknown constant parameters. The objective is to control the orbit of the spacecraft, despite uncertainties in the gravitational force of asteroid. For the trajectory control of the spacecraft, first a generalized composite noncertainty-equivalence adaptive (NCEA) control system - based on the immersion and invariance theory - is developed. This system consists of a control module for stabilization and an identifier for the estimation of parameters. The identifier includes a dynamic integral type parameter adaptation law, which is formed by combining the update laws of the NCEA system, gradient algorithm-based identification scheme, and classical certainty-equivalence adaptive system. The classical component of the composite update law is used to cancel certain sign-indefinite functions in the derivative of a Lyapunov function. The full estimate of each unknown parameter is the sum of an algebraic function, and a signal generated by the composite integral type adaptation law. The gradient algorithm-based update rule is a function of the estimation model error. Then, by a proper choice of adaptation gains of the generalized control system, two additional composite control systems - (i) an NCEA system with gradient algorithm-based adaptation law, and (ii) an NCEA controller with classical update law - are derived. By the Lyapunov analysis, it is shown that in each composite closed-loop system, all of the signals are bounded, and the trajectory tracking error asymptotically converges to zero. Interestingly, composite systems, including gradient-based adaptation, have two attractive manifolds to which certain vector functions converge, but the composite system, without gradient-based update law, has a single attractive manifold. Numerical results are presented, which show that robust orbit control of the spacecraft around 433 Eros and hovering control in the vicinity of Ida are accomplished, despite parameter uncertainties and perturbing disturbance forces on the spacecraft.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65(3), 313–344 (1996)

    MATH  Google Scholar 

  2. Herrera-Sucarrat, E., Palmer, P.L., Roberts, R.M.: Modeling the gravitational potential of a nonspherical asteroid. J. Guid. Control Dyn. 36(3), 790–798 (2013)

    Article  Google Scholar 

  3. Chauvineau, B., Farinella, P., Mignard, F.: Planar orbits about a triaxial body: Application to asteroidal satellites. Icarus 105(2), 370–384 (1993)

    Article  Google Scholar 

  4. Scheeres, D.J.: Dynamics about uniformly rotating triaxial ellipsoids: Applications to asteroids. Icarus 110(2), 225–238 (1994)

    Article  Google Scholar 

  5. Scheeres, D.J., Williams, B.G., Miller, J.K.: Evaluation of the dynamic environment of an asteroid: Applications to 433 Eros. J. Guid. Control Dyn. 23(3), 466–475 (2000)

    Article  Google Scholar 

  6. Tricarico, P., Sykes, M.V.: The dynamical environment of Dawn at Vesta. Planetary Space Sci. 58(12), 1516–1525 (2010)

    Article  Google Scholar 

  7. Wie, B.: Space Vehicle Guidance, Control, and Astrodynamics. AIAA, Inc, Reston (2015)

    Book  Google Scholar 

  8. Misra, A.K., Panchenko, Y.: Attitude dynamics of satellites orbiting an asteroid. J. Astronaut. Sci. 54(3–4), 369–381 (2006)

    Article  MathSciNet  Google Scholar 

  9. Kumar, K.D.: Attitude dynamics and control of satellites orbiting rotating asteroids. Acta Mech. 198(1–2), 99–118 (2008)

    Article  Google Scholar 

  10. Kikuchi, S., Howell, K.C., Tsuda, Y., Kawaguchi, J.: Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with sun-tracking attitude motion. Acta Astronaut. 140, 34–48 (2017)

    Article  Google Scholar 

  11. Broschart, S.B., Scheeres, D.J.: Control of hovering spacecraft near small bodies: Application to asteroid 25143 Itokawa. J. Guid. Control Dyn. 28(2), 343–354 (2005)

    Article  Google Scholar 

  12. Yang, H., Baoyin, H.: Fuel-optimal control for soft landing on an irregular asteroid. IEEE Trans. Aerosp. Electron. Syst. 51(3), 1688–1697 (2015)

    Article  Google Scholar 

  13. Nazari, M., Wauson, R., Critz, T., Butcher, E.A., Scheeres, D.J.: Observer-based body-frame hovering control over a tumbling asteroid. Acta Astronaut. 102, 124–139 (2014)

    Article  Google Scholar 

  14. Guelman, M.: Closed-loop control of close orbits around asteroids. J. Guid. Control Dyn. 38(5), 854–860 (2015)

    Article  Google Scholar 

  15. Guelman, M.: Closed-loop control for global coverage and equatorial hovering about an asteroid. Acta Astronaut. 137, 353–361 (2017)

    Article  Google Scholar 

  16. Furfaro, R., Cersosimo, D., Wibben, D.: Asteroid precision landing via multiple sliding surfaces guidance techniques. J. Guid. Control Dyn. 36(4), 1075–1092 (2013)

    Article  Google Scholar 

  17. Furfaro, R.: Hovering in asteroid dynamical environments using higher-order sliding control. J. Guid. Control Dyn. 38(2), 263–279 (2015)

    Article  MathSciNet  Google Scholar 

  18. Yang, H., Bai, X., Baoyin, H.: Finite-time control for asteroid hovering and landing via terminal sliding-mode guidance. Acta Astronaut. 132, 78–89 (2017)

    Article  Google Scholar 

  19. Gui, H., Ruiter, A.H.J.: Control of asteroid-hovering spacecraft with disturbance rejection using position-only measurements. J. Guid. Control Dyn. 40(10), 2401–2416 (2017)

    Article  Google Scholar 

  20. Wang, Y., Xu, S.: Body-fixed orbit-attitude hovering control over an asteroid using non-canonical Hamiltonian structure. Acta Astronaut. 117, 450–468 (2015)

    Article  Google Scholar 

  21. Lee, D., Sanyal, A.K., Butcher, E.A., Scheeres, D.J.: Almost global asymptotic tracking control for spacecraft body-fixed hovering over an asteroid. Aerosp. Sci. Technol. 38, 105–115 (2014)

    Article  Google Scholar 

  22. Lee, D., Sanyal, A.K., Butcher, E.A., Scheeres, D.J.: Finite-time control for spacecraft body-fixed hovering over an asteroid. IEEE Trans. Aerosp. Electron. Syst. 51(1), 506–520 (2015)

    Article  Google Scholar 

  23. Lee, D., Vukovich, G.: Adaptive sliding mode control for spacecraft body-fixed hovering in proximity of an asteroid. Aerosp. Sci. Technol. 46, 471–483 (2015)

    Article  Google Scholar 

  24. Vukovich, G., Gui, H.: Robust adaptive tracking of rigid-body motion with application to asteroid proximity operations. IEEE Trans. Aerosp. Electron. Syst. 53 (1), 419–430 (2017)

    Article  Google Scholar 

  25. Lee, K.W., Singh, S.N.: Adaptive and supertwisting adaptive spacecraft orbit control around asteroids. J. Aerosp. Eng., 32(4) (2019)

  26. Ioannou, P., Fidan, B.: Adaptive Control Tutorial. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  27. Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Springer, London (2008)

    Book  Google Scholar 

  28. Seo, D., Akella, M.R.: High-performance spacecraft adaptive attitude-tracking control through attractive-manifold design. J. Guid. Control Dyn. 31(4), 884–891 (2008)

    Article  Google Scholar 

  29. Lee, K.W., Singh, S.N.: Noncertainty-equivalence spacecraft adaptive formation control with filtered signals. J. Aerosp. Eng. 30(5), 04017029 (2017)

    Article  Google Scholar 

  30. Zhang, B., Cai, Y.: Immersion and invariance based adaptive backstepping control for body-fixed hovering over an asteroid. IEEE Access 7, 34850–34861 (2019)

    Article  Google Scholar 

  31. Lee, K.W., Singh, S.N.: Immersion-and invariance-based adaptive control of asteroid-orbiting and - hovering spacecraft. J. Astronaut. Sci. 66(4), 537–553 (2019)

    Article  Google Scholar 

  32. Duarte, M.A., Narendra, K.S.: Combined direct and indirect approach to adaptive control. IEEE. Trans. Autom. Control 34(10), 1071–1075 (1989)

    Article  MathSciNet  Google Scholar 

  33. Slotine, J.-J.E., Li, W.: Composite adaptive control of robot manipulators. Automatica 25(4), 509–519 (1989)

    Article  MathSciNet  Google Scholar 

  34. Patre, P.M., Bhasin, S., Wilcox, Z.D., Dixon, W.E.: Composite adaptation for neural network-based controllers. IEEE Trans. Autom. Control 55(4), 944–950 (2010)

    Article  MathSciNet  Google Scholar 

  35. Lavretsky, E.: Combined/composite model reference adaptive control. IEEE Trans. Autom. Control 54(11), 2692–2697 (2009)

    Article  MathSciNet  Google Scholar 

  36. Liu, Z., Yuan, R., Fan, G., Yi, J.: Immersion and invariance based composite adaptive control of nonlinear high-order systems. In: Proceedings of 2018 Chinese Control and Decision Conf., pp 96–101. IEEE (2018)

  37. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. American Institute of Aeronautics and Astronautics Education Series VA (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahjendra N. Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.W., Singh, S.N. Generalized Composite Noncertainty-Equivalence Adaptive Control of Orbiting Spacecraft in Vicinity of Asteroid. J Astronaut Sci 67, 1021–1043 (2020). https://doi.org/10.1007/s40295-019-00207-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00207-x

Keywords

  • Composite adaptive spacecraft control
  • Asteroid orbiting spacecraft
  • Composite gradient-based adaptation
  • Composite noncertainty-equivalence adaptive system
  • Immersion and invariance-based orbit control
  • Composite nonlinear adaptive control