Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

EQUULEUS Trajectory Design

Abstract

This paper presents the trajectory design for EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS), which aims to demonstrate orbit control capability of CubeSats in the cislunar space. The mission plans to observe the far side of the Moon from an Earth-Moon L2 (EML2) libration point orbit. The EQUULEUS trajectory design needs to react to uncertainties of mission design parameters such as the launch conditions, errors, and thrust levels. The main challenge is to quickly design science orbits at EML2 and low-energy transfers from the post-deployment trajectory to the science orbits within the CubeSat’s limited propulsion capabilities. To overcome this challenge, we develop a systematic trajectory design approach that 1) designs over 13,000 EML2 quasi-halo orbits in a full-ephemeris model with a statistical stationkeeping cost evaluation, and 2) identifies families of low-energy transfers to the science orbits using lunar flybys and solar perturbations. The approach is successfully applied for the trajectory design of EQUULEUS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    As of September 2019, a new set of ICs for the launch in June 2020 is also available provided by NASA.

References

  1. 1.

    Angelopoulos, V.: The ARTEMIS mission. Space Sci. Rev. 165(1-4), 3–25 (2011). https://doi.org/10.1007/s11214-010-9687-2

  2. 2.

    Asakawa, J., Koizumi, H., Nishii, K., Takeda, N., Murohara, M., Funase, R., Komurasaki, K.: Fundamental Ground Experiment of a Water Resistojet Propulsion System: AQUARIUS Installed on a 6U CubeSat: EQUULEUS. Trans Jpn Soc Aeronaut Space Sci 16(5), 427–431 (2018). https://doi.org/10.2322/tastj.16.427

  3. 3.

    Baresi, N., Chikazawa, T., Dei Tos, D.A., Campagnola, S., Kawabata, Y., Ichinomiya, K., Ozaki, N., Kakihara, K., Oguri, K., Funase, R., Kawakatsu, Y.: Trajectory Design and Station-keeping Updates for the Cislunar CubeSat EQUULEUS. In: 32nd International Symposium on Space Technology and Science, Fukui, Japan (2019)

  4. 4.

    Belbruno, E.A., Miller, J.K.: Sun-perturbed Earth-to-moon transfers with ballistic capture. J. Guid. Control Dyn. 16(4), 770–775 (1993). https://doi.org/10.2514/3.21079

  5. 5.

    Breakwell, J.V., Brown, J.V.: The ’Halo’ family of 3-dimensional periodic orbits in the Earth-Moon restricted 3-body problem. Celest. Mech. 20 (4), 389–404 (1979). https://doi.org/10.1007/BF01230405

  6. 6.

    Campagnola, S., Lo, M.: BepiColombo gravitational capture and the elliptic restricted three-body problem. Proc. Appl. Math. Mech. 7(1), 1030905–1030906 (2007). https://doi.org/10.1002/pamm.200700330

  7. 7.

    Campagnola, S., Lo, M., Newton, P.: Subregions of Motion and Elliptic Halo Orbits in the Elliptic Restricted Three-Body Problem. In: AAS/AIAA Space Flight Mechanics Meeting, Galveston, TX (2008)

  8. 8.

    Campagnola, S., Ozaki, N., Sugimoto, Y., Yam, C.H., Hongru, C., Kawabata, Y., Ogura, S., Sarli, B., Kawakatsu, Y., Funase, R., Nakasuka, S.: Low-Thrust Trajectory Design and Operations of PROCYON, The First Deep-space Micro-spacecraft. In: 25th International Symposium on Space Flight Dynamics, Munich, Germany (2015)

  9. 9.

    Campagnola, S., Hernando-Ayuso, J., Kakihara, K., Kawabata, Y., Chikazawa, T., Funase, R., Ozaki, N., Baresi, N., Hashimoto, T., Kawakatsu, Y., Ikenaga, T., Oguri, K., Oshima, K.: Mission Analysis for the EM-1 CubeSats EQUULEUS and OMOTENASHI. IEEE Aerosp. Electron. Syst. Mag. 34(4), 38–44 (2019). https://doi.org/10.1109/MAES.2019.2916291

  10. 10.

    Mk, Chung, Hatch, S., Kangas, J., Long, S., Roncoli, R., Sweetser, T.: Trans-Lunar Cruise Trajectory Design of GRAIL (Gravity Recovery and Interior Laboratory) Mission. In: AIAA/AAS Astrodynamics Specialist Conference American Institute of Aeronautics and Astronautics, Reston, Virigina. https://doi.org/10.2514/6.2010-8384 (2010)

  11. 11.

    Conley, C.C.: Low energy transit orbits in the restricted Three-Body problems. SIAM J. Appl. Math. 16(4), 732–746 (1968). https://doi.org/10.1137/0116060

  12. 12.

    Dei Tos, D.A., Topputo, F.: Trajectory refinement of three-body orbits in the real solar system model. Adv. Space Res. 59(8), 2117–2132 (2017). https://doi.org/10.1016/j.asr.2017.01.039

  13. 13.

    Dei Tos, DA, Baresi N, Chikazawa, T., Campagnola, S., Kawabata, Y., IIyama, K., Ozaki, N., Funase, R., Kawakatsu, Y.: Challenges and Solutions for the Trajectory Design of EQUULEUS. In: 29Th Workshop on JAXA Astrodynamics and Flight Mechanics, Kanagawa, Japan (2019)

  14. 14.

    Farquhar, R., Muhonen, D., Richardson, D.: Mission Design for a Halo Orbiter of the Earth. In: Astrodynamics Conference American Institute of Aeronautics and Astronautics, Reston, Virigina. https://doi.org/10.2514/6.1976-810 (1976)

  15. 15.

    Folta, D.C., Pavlak, T.A., Howell, K.C., Woodard, M.A., Woodfork, D.W.: Stationkeeping of Lissajous Trajectories in the Earth-Moon System with Applications to ARTEMIS. In: AAS/AIAA Space Flight Mechanics Meeting, San Diego, CA (2010)

  16. 16.

    Folta, D.C., Pavlak, T.A., Haapala, A.F., Howell, K.C., Woodard, M.A.: Earth–moon libration point orbit stationkeeping: theory, modeling, and operations. Acta Astronaut. 94(1), 421–433 (2014). https://doi.org/10.1016/j.actaastro.2013.01.022

  17. 17.

    Funase, R., Inamori, T., Ikari, S., Ozaki, N., Koizumi, H., Tomiki, A., Kobayashi, Y., Kawakatsu, Y.: Initial Operation Results of a 50Kg-Class Deep Space Exploration Micro-Spacecraft PROCYON. In: 29th AIAA/USU Small Satellite Conference, Logan, UT (2015)

  18. 18.

    Funase, R., Ozaki, N., Nakajima, S., Oguri, K., Miyoshi, K., Campagnola, S., Koizumi, H., Kobayashi, Y., Ito, T., Kudo, T., Koshiro, Y., Nomura, S.: Mission to Earth Moon Lagrange Point by a 6U CubeSat : EQUULEUS. In: 31st International Symposium on Space Technology and Science, Ehime, Japan (2017)

  19. 19.

    Gawlik, E.S., Marsden, J.E., Du Toit, PC, Campagnola, S: Lagrangian coherent structures in the planar elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 103(3), 227–249 (2009). https://doi.org/10.1007/s10569-008-9180-3

  20. 20.

    Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization. SIAM J. Optim. 12(4), 979–1006 (2002). https://doi.org/10.1137/S1052623499350013, 17444372724

  21. 21.

    Gȯmez, G, Mondelo, J.: The dynamics around the collinear equilibrium points of the RTBP. Physica D: Nonlinear Phenom. 157(4), 283–321 (2001). https://doi.org/10.1016/S0167-2789(01)00312-8

  22. 22.

    Gomez, G., Howell, K.C., Masdemont, J., Simo, C.: Station-Keeping Strategies for Translunar Libration Point Orbits. In: AAS/AIAA Space Flight Mechanics Meeting (1998)

  23. 23.

    Gȯmez, G, Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571–1606 (2004). https://doi.org/10.1088/0951-7715/17/5/002

  24. 24.

    Guzzetti, D., Bosanac, N., Haapala, A., Howell, K.C., Folta, D.C.: Rapid trajectory design in the Earth–Moon ephemeris system via an interactive catalog of periodic and quasi-periodic orbits. Acta Astronaut. 126, 439–455 (2016). https://doi.org/10.1016/j.actaastro.2016.06.029

  25. 25.

    Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D: Nonlinear Phenom. 149(4), 248–277 (2001). https://doi.org/10.1016/S0167-2789(00)00199-8

  26. 26.

    Howell, K.C.: Three-dimensional, Periodic, ’Halo’ Orbits. Celest. Mech. 32(1), 53–71 (1984). https://doi.org/10.1007/BF01358403

  27. 27.

    Howell, K.C., Pernicka, H.J.: Station-keeping method for libration point trajectories. J. Guid. Control Dyn. 16(1), 151–159 (1993). https://doi.org/10.2514/3.11440

  28. 28.

    Ikenaga, T., Utashima, M.: Study on the Stationkeeping Strategy for the Libration Point Mission. Trans. Jpn. Soc. Aeronaut. Space Sci. 10(ists28), Pd_11–Pd_20 (2012). https://doi.org/10.2322/tastj.10.Pd_11

  29. 29.

    Kawaguchi, J., Yamakawa, H., Uesugi, T., Matsuo, H.: On making use of lunar and solar gravity assists in LUNAR-a, PLANET-b missions. Acta Astronaut. 35(9-11), 633–642 (1995). https://doi.org/10.1016/0094-5765(95)00013-P

  30. 30.

    Kayama, Y., Yam, C.H., Oshima, K., Suda, S., Kawakatsu, Y.: Matching of Patched-Hyperbolas for Gravity-Assist Trajectory Design. In: 31th International Symposium on Space Technology and Science, Ehime, pp. 2017-d-024 (2017)

  31. 31.

    Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low Energy Transfer to the Moon. Celest. Mech. Dyn. Astron. 81(63). https://doi.org/10.1023/A:1013359120468 (2001)

  32. 32.

    Nakamiya, M., Kawakatsu, Y.: Maintenance of halo orbits under the thrusting constraints. J. Guid. Control Dyn. 35(4), 1224–1229 (2012). https://doi.org/10.2514/1.55305

  33. 33.

    Pavlak, T.A.: Trajectory Design and Orbit Maintenance Strategies in Multi-Body Dynamical Regimes. Ph.D. thesis, Purdue University (2013)

  34. 34.

    Pezent, J., Sood, R., Heaton, A.: High-fidelity contingency trajectory design and analysis for NASA’s near-earth asteroid (NEA) Scout solar sail Mission. Acta Astronaut. 159(October 2018), 385–396 (2019). https://doi.org/10.1016/j.actaastro.2019.03.050

  35. 35.

    Renault, C.A., Scheeres, D.J.: Statistical analysis of control maneuvers in unstable orbital environments. J. Guid. Control Dyn. 26(5), 758–769 (2003). https://doi.org/10.2514/2.5110

  36. 36.

    Roncoli, R., Fujii, K.: Mission Design Overview for the Gravity Recovery and Interior Laboratory (GRAIL) Mission. In: AIAA Guidance Nagigation and Control Conference, Ontario, Canada (2010)

  37. 37.

    Ross, S.D., Koon, W.S., Lo, M.W., Marsden, J.E.: Design of A Multi-Moon Orbiter. In: 13rd AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico (2003)

  38. 38.

    Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenom. 212(3-4), 271–304 (2005). https://doi.org/10.1016/j.physd.2005.10.007

  39. 39.

    Szebehely, V., Geyling, F.T.: Theory of orbits: The restricted problem of three bodies. J. Appl. Mech. 35(3), 624–624 (1968). https://doi.org/10.1115/1.3601280

  40. 40.

    Uesugi, K., Matsuo, H., Kawaguchi, J., Hayashi, T.: Japanese first double lunar swingby mission “Hiten”. Acta Astronaut. 25(7), 347–355 (1991). https://doi.org/10.1016/0094-5765(91)90014-V

  41. 41.

    Yam, C.H., Kayama, Y., Suda, S., Kawakatsu, Y.: Patched-Integrated Trajectories for Lunar Gravity Assists In: 26th Workshop on JAXA Astrodynamics and Flight Mechanics, Kanagawa, Japan (2016)

  42. 42.

    Yarnoz, G.D., Yam, C.H., Campagnola, S., Kawakatsu, Y.: Extended Tisserand-Poincare Graph and Multiple Lunar Swingby Design with Sun Perturbation. In: 6th International Conference on Astrodynamics Tools and Techniques. Darmstadt, Germany (2016)

Download references

Acknowledgements

Part of the work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank the former and current members of the EQUULEUS mission analysis team for their support: Chit Hong Yam, Daniel Garcia, Tomohiro Yamaguchi, Quentin Verspieren, Yuki Kayama, Stefano Bonasera, Mattia Pugliatti, Yosuke Kawabata, Takuya Chikazawa, Kento Ichinomiya, Tomoya Kitade, Masahiro Fujiwara, and Diogene A. Dei Tos.

Author information

Correspondence to Kenshiro Oguri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oguri, K., Oshima, K., Campagnola, S. et al. EQUULEUS Trajectory Design. J of Astronaut Sci (2020). https://doi.org/10.1007/s40295-019-00206-y

Download citation

Keywords

  • EQUULEUS
  • Low-energy transfer
  • Halo orbit
  • Earth-Moon Lagrange point
  • Multi-body dynamics
  • Optimization
  • CubeSat